tính : A = 1/15+1/35+...+1/2499
Tính: C=1/15+1/35+...+1/2499
=1/2(2/3.5 + 2/5.7 +.....+2/49.51
=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)
=1/2(1/3-1/51)
=1/2.16/51
=8/51
HỌC TỐT NHÉ BẠN!
A=1/15+1/35+......+1/2499
Tham khảo
=1/2(2/3.5 + 2/5.7 +.....+2/49.51
=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)
=1/2(1/3-1/51)
=1/2.16/51
=8/51
Tham khảo
=1/2(2/3.5 + 2/5.7 +.....+2/49.51
=1/2(1/3 - 1/5+1/5-1/7+....+1/49-1/51)
=1/2(1/3-1/51)
=1/2.16/51
=8/51
C=1/15+1/35+...+1/2499.Tách 1/2499 thành 1/49.51 kiểu j vậy.
Olm sẽ hướng dẫn các em phương pháo giải tổng quát dạng này như sau:
Bước 1 phân tích số đã cho thành tích của các số nguyên tố
Bước 2 nhóm các thừa số nguyên tố thành 1 nhóm ta sẽ được tích của hai số cần tìm
2499 = 3 \(\times\) 7 \(\times\) 7 \(\times\) 17
2499 = ( 7 \(\times\) 7) \(\times\) ( 3 \(\times\) 17)
2499 = 49 \(\times\) 51
C=1/15+1/35+...+1/2499 làm sao để tách 1/2499 thành 1/49.51 v
\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)
\(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)
\(=\dfrac{1}{3}-\dfrac{1}{51}\)
\(=\dfrac{16}{51}\)
thực hiện phép tính sau
M=1/3+1/15+1/35+...+1/2499
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(M=\frac{1}{2}\left(1-\frac{1}{51}\right)\)
M=\(\frac{1}{2}.\frac{50}{51}=\frac{25}{51}\)
\(M=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(M=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{51}\right)\)
\(M=\frac{1}{2}.\frac{50}{51}\)
\(M=\frac{25}{51}\)
M=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
M=\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
M=\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
M=\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{51}\right)\)
M=\(\frac{1}{2}.\frac{50}{51}\)
M=\(\frac{25}{51}\)
( k mình nha)
chứng tỏ:
A, a/n.(n+a)=1/n-1/n+a
B, dựa vào câu A, tính: 1/15+1/35+...+1/2499
a) 1/n-1/n+a=a/n.(n+a)
=(n+a)-n/n.(n+a)=n-n+a/n.(n+a)
=a/n.(n+a)
b)1/15+1/35+...+1/2499
=1/3.5+1/5.7+......+1/49.51
=1.2/2.3.5+1.2/2.5.7+.....+1.2/2.49.51
=1/2(2/3.5+2/5.7+.....+2/49.51)
=1/2(1/3-1/5+1/5-1/7+.......+1/49-1/50)
=1/2(1/3-1/50)
=1/2(50/150-3/150)
=1/2.47/150
=47/300
Tính ;
a ) A = 5/1*4 + 5/4*7 + 5/7*10 + ....... + 5/100*103
b) B = 1/15 + 1/35 + 1/63 + ..........+ 1/2499
a) A x 3/5 = 3/1.4 + 3/4.7 + 3/7.10 + ...+ 3/100.103
= 1 - 1/4 + 1/4 - 1/7 + 1/7 -1/10 + ... + 1/100 - 1/103
= 1 - 1/103
= 102/103 => A = 102/103 : 3/5 = 170/103
b) B = 1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/49.51
B x2 = 2/3.5 + 2/5.7 + 2/7.9 + ...+ 2/49.51
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1.49 - 1/51
= 1/3 - 1/51
= 16/51
=> B = 16/51 : 2 = 8/51
tính
\(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+.........+\frac{1}{2499}\)
C=1/15+1/35+1/63+..+1/2499
=1/3.5+1/5.7+1/7.9+...+1/49.51
=1/2(2/3.5+2/5.7+2/7.9+...+2/49.51)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/49-1/51)
= 1/2.(1/3-1/51)
=1/2.16/51
=8/51
1/15+1/35+...+1/2499
\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
= \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
= \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
= \(\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
Bài giải:
\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{8}{51}\)