Những câu hỏi liên quan
NK
Xem chi tiết
DM
Xem chi tiết
NM
10 tháng 4 2017 lúc 22:14

\(S=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(S=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(S=1-\frac{1}{100!}< 1\)

Vậy S<1

Bình luận (0)
DM
10 tháng 4 2017 lúc 22:15

thánh đây rồi , đơn giản vậy em nghĩ mãi k ra , cảm ơn anh nhiều

Bình luận (0)
TK
Xem chi tiết
NH
1 tháng 3 2018 lúc 21:14

\(S=\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+........+\dfrac{99}{1.2.......100}\)

\(=\dfrac{1}{2!}+\dfrac{2}{3!}+....+\dfrac{99}{100!}\)

\(=\dfrac{2-1}{2!}+\dfrac{3-1}{3!}+.......+\dfrac{100-1}{100!}\)

\(=\dfrac{1}{1}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+....+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(=1-\dfrac{1}{100!}< 1\)

\(\Leftrightarrow S< 1\left(đpcm\right)\)

Bình luận (0)
TL
Xem chi tiết
NS
Xem chi tiết
TT
Xem chi tiết
LH
6 tháng 3 2015 lúc 17:31

Ta có:

\(A=1+1.2+1.2.3+...+1.2.3.....n\)

     \(=1!+2!+3!+4!+...+n!\)

Ta thấy bắt đầu từ 5! trở lên luôn có tận cùng là 0 vì nó chứa 2 thừa số 5 và 2.

Ta lại có:

\(A=1+2+6+24+\left(..0\right)+...+\left(...0\right)\)

     \(=33+\left(...0\right)\)

     \(=\left(...3\right)\)

Mà số chính phương có tận cùng là 0;1;5;6;9 nên A không là số chính phương.

Bình luận (0)
NT
Xem chi tiết
KG
5 tháng 3 2015 lúc 12:02

tính tổng dãy số thì dễ nhưng hãy viết rõ ràng hơn

Bình luận (0)
DC
Xem chi tiết
ZZ
Xem chi tiết