TC

CHỨNG MINH:  1/1.2+1/1.2.3+1/1.2.3.4+....+1/1.2.3.4....1000 < 1

TV
5 tháng 5 2018 lúc 16:10

\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}\)

Có: \(\frac{1}{1.2.3.4}< \frac{1}{3.4}\)

\(\frac{1}{1.2.3.4.5}< \frac{1}{4.5}\)

..................................

\(\frac{1}{1.2.3.4.....1000}< \frac{1}{999.1000}\)

=>\(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{999}-\frac{1}{1000}\)

=> \(\frac{1}{1.2.3.4}+\frac{1}{1.2.3.4.5}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{1}{2}+\frac{1}{1.2.3}+\frac{1}{3}-\frac{1}{1000}\)

=> \(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< \frac{999}{1000}< \frac{1000}{1000}\)

=>\(\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4.....1000}< 1\)

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
TL
Xem chi tiết
TT
Xem chi tiết
DC
Xem chi tiết
HN
Xem chi tiết
TL
Xem chi tiết
NT
Xem chi tiết
DD
Xem chi tiết
BC
Xem chi tiết