Cho tam giác ABC cân tại A và 2 đường trung tuyến BM CN cát nhau tại K
a) Cm BC< 4KM
cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K.
a, CM : BM=NC.
b, CM : AK là đường trung trực của MN.
c, CM : BC < 4KM
Cho tam giác ABC cân và hai đường trung tuyến BM, CN cắt nhau tại K
a, CM: tam giác BNC=tam giác CMB
b, CM tam giác BKC cân tại K
c, CM BC<4KM
Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh : BC < 4KM
cho tam giác ABC cân tại A VÀ HAI ĐƯỜNG TRUNG TUYẾN BM,CNCẮT NHAU TẠI K
a, CM TAM GIÁC BNC VÀ TAM GIÁC CMB
b, CM TAM GIÁC BKC LÀ TAM GIÁC CÂN TẠI K
c, CM BC< 4KM
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a CM tam giác ABM tam giác CAN b MN song song BC c BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
a) Ta có: AN = NB = 1/2AB (gt)
AM = MC = 1/2AC (gt)
mà AB = AC (gt)
=> AN = NB = AM = MC
Xét tam giác ABM và tam giác ACN
có: AM = AN (gt)
\(\widehat{A}\): chung
AB = AC (gt)
=> tam giác ABM = tam giác ACN (c.g.c)
b) Ta có: AN = NB (gt)
AM = MC (gt)
=> NM là đường trung bình của tam giác ABC
=> MN // BC
c) Ta có: tam giác ABM = tam giác ACN (cmt)
=> \(\widehat{ABM}=\widehat{ACN}\)
Mà \(\widehat{B}=\widehat{ABM}+\widehat{MBC}\)
\(\widehat{C}=\widehat{ACN}+\widehat{NCB}\)
\(\widehat{B}=\widehat{C}\) (gt)
=> \(\widehat{KBC}=\widehat{KCB}\) => tam giác KBC cân tại K có KD là đường trung truyến => KD cũng là đường cao => KD \(\perp\)BC
Tam giác ABC cân tại A có AD là đường trung tuyến => AD cũng là đường cao => AD \(\perp\)BC
=> KD \(\equiv\)AD => A, K, D thẳng hàng
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a) CM tam giác ABM=tam giác CAN b) MN song song BC c) BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
a, Xét \(\Delta ABM\)và \(\Delta CAN\) có
AB = AC ( \(\Delta\)cân )
\(\widehat{A}\) chung
AN = AM
\(\Rightarrow\Delta ABM=\Delta CAN\)( c.g.c)
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại K. Chứng minh
a)Tam giác BNC=Tam giác CMB
b)Tam giác BKC cân tại A
c)MN // BC
C) MN // BC
o l m . v n
a, tam giác ABC cân tại A (gt)
=> AB = AC (Đn)
có M;N lần lượt là trung điểm của AC;AB (gt) => AM = MC = 1/2AC và AN = BN = 1/2BC (tc)
=> AN = AM = BN = CM
xét tam giác NBC và tam giác MCB có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (Gt)
=> tam giác NBC = tam giác MCB (c-g-c) (1)
b, (1) => ^KBC = ^KCB (đn)
=> tam giác KBC cân tại K (dh)
c, có tam giác ABC cân tại A (gt) => ^ABC = (180 - ^BAC) : 2 (tc)
có AM = AN (câu a) => tam giác AMN cân tại A (đn) => ^ANM = (180 - ^BAC) : 2 (tc)
=> ^ABC = ^ANM mà 2 góc này đồng vị
=> MN // BC (đl)
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM, CN cắt nhau tại K. Chứng minh
a)Tam giác BNC=Tam giác CMB
b)Tam giác BKC cân tại A
c)BC<4.KM
a) Ta có: ΔABC cân tại A
Nên: AB=AC
Mà: CN là đường trung tuyến => NB=NA
BM là đường trung tuyến => MA=MC
Suy ra: NB=NA=MA=MC
Xét ΔBNC và ΔCMB
Có: BN=CM (cmt)
\(\widehat{B}\)=\(\widehat{C}\)(do ΔABC cân)
BC chung
Suy ra: ΔBNC=ΔCMB (c-g-c)
Câu 1:Cho tam giác ABC cân tại A. 2 đường trung tuyến BM và CN cắt nhau tại K.Chứng minh : BC < 4KM
Câu 2:Cho tam giác nhọn ABC. Vẽ ngoài tam giác ABC các tam giác đềuABD và ACE. Gọi M là giao điểm của DC và BE. Hỏi góc nào bằng 120 độ.