Những câu hỏi liên quan
PT
Xem chi tiết
VI

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

Bình luận (0)
 Khách vãng lai đã xóa
VI

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
VI

c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)

\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau 

\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)

Vậy..........

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HL
4 tháng 10 2016 lúc 16:10

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

Bình luận (0)
TL
4 tháng 10 2016 lúc 15:45

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

Bình luận (0)
NM
4 tháng 10 2016 lúc 15:48

Bài 1 :

Ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30

Vậy ...

Bài 2 :

Đặt k =  . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được  = 1 suy ra x = 2, y = 5

Với k = - 1 ta được  = -1  suy ra x = -2, y = -5

Bình luận (0)
MA
Xem chi tiết
MH
30 tháng 9 2015 lúc 9:35

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo t/s dãy tỉ số bằng nhau có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\frac{x}{8}=2\Rightarrow x=2.8=16\)

=>\(\frac{y}{12}=2\Rightarrow y=2.12=24\)

=>\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

Vậy x=16; y=24; z=30.

Bình luận (0)
TD
30 tháng 9 2015 lúc 9:36

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> x=2.8=16

y=2.12=24

z=2.15=30

Bình luận (0)
PH
Xem chi tiết
CN
16 tháng 7 2016 lúc 10:58

2). Ta có: x/2=y/3 => x/8 = y/12

                y/4=z/5 => y/12 = z/15

=> x/2=y/12=z/15 và x+y-z=10

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}\)=\(\frac{y}{12}\)=\(\frac{z}{15}\)=\(\frac{x+y-z}{2+12-15}\)=\(\frac{10}{-1}\)= -10

=> x=2.(-10)=-20

     y=12.(-10)=-120

     z=15.(-10)=-150

Vậy x=-20; y=-120;z=-150

3). Đặt \(\frac{x}{2}\)=\(\frac{y}{5}\)= k

=> x=2k

     y=5k

Ta có xy = 10

       2k.5k =10

       10. k2=10

       k2      = 10 :10=1

=> k =1; k=-1

+) k = 1

=> x=2.1=2

     y=5.1=5

+) k = -1

=> x= 2.(-1) =-2

     y=5.(-1) = -5

Vậy x=2;y=5 hoặc x=-2;y=-5

Bình luận (0)
NN
16 tháng 7 2016 lúc 10:51

Câu 2:

Ta có \(\frac{x}{2}=\frac{y}{3}=\frac{x}{8}=\frac{y}{12}\)(1)

           \(\frac{y}{4}=\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)(2)

    Từ (1) và (2) suy ra:\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng dãy tỉ số bằng nhau ta có:

    \(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Vậy x=16;y=24;z=30

Bình luận (0)
NN
16 tháng 7 2016 lúc 11:00

Câu 3:

Vì xy=10 nên x,y khác 0

    Đặt \(\frac{x}{2}=k\)\(\Rightarrow\)x=2k(1)

           \(\frac{y}{5}=k\)\(\Rightarrow\)y=5k2)

Suy ra x.y=2k.5k=10k2

      Ta có:x.y=10

Do đó k=1;-1. Thay vào (1) và (2) ta có:

x=2k(Suy ra:x=2;-2)

y=5k(Suy ra:y=5;-5)

Vậy cặp (x;y)là:(2;5)(-2;-5)

         

 

 

Bình luận (1)
CR
Xem chi tiết
NN
Xem chi tiết
DT
21 tháng 7 2015 lúc 11:46

\(dat:\frac{x}{2}=\frac{y}{5}=k\)

x=2k   ;  y=5k

x.y=10k2

10 = 10k2

k= 1

k  = +-1

Voi : k=1 = > x=1.2=2 ; y=5.1=5

voi : k=-1 => x=-1.2=-2 ; y=-1.5=-5

Bình luận (0)
DT
21 tháng 7 2015 lúc 11:44

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{4y}{12};\frac{3y}{12}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Ap dung tinh chat day ti so bang nhau ta co : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra  : \(\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=2.12=24;\frac{z}{15}=2\Rightarrow z=2.15=30\)

nhieu qua lam ko het

Bình luận (0)
ND
Xem chi tiết
PD
17 tháng 12 2016 lúc 9:16

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)

Mà x-2y+3z=-10

Hay 2k+1-2(3k+2)+3(4k+3)=-10

2k+1-6k-4+12k+9=-10

(2k-6k+12k)+(1-4+9)=-10

8k+6=-10

8k=-16

k=-2

\(\Rightarrow x=-2\cdot2+1=-3,y=-2\cdot3+2=-4,z=-2\cdot4+3=-5\)

 

Bình luận (0)
NT
Xem chi tiết
DL
6 tháng 7 2016 lúc 10:16

\(\Leftrightarrow\frac{1}{y}=\frac{3}{10}-\frac{x}{10}\Leftrightarrow\frac{1}{y}=\frac{3-x}{10}\Rightarrow y\left(3-x\right)=10\)(1)

y thuộc N* => y > 0, từ (1) => 3 - x > 0 => 0 < x < 3 x thuộc N* thì:

x = 1 => y = 5x = 2 => y = 10

KL: Phương trình có 2 cặp nghiệm thuộc N* là (1; 5) và (2; 10).

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 5 2019 lúc 8:02

c) Tìm các số nguyên x,y thỏa mãn

*\(2xy+6x-y=10\)

\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)

\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)

\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)

Lập bảng xét ước nữa là xong.

\(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)

\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)

\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)

\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)

Lập bảng xét ước nữa là xong.

Bình luận (0)
H24
17 tháng 5 2019 lúc 8:10

Mới nhìn vào thấy bài toán hay hay lạ kì.

Thêm một vào bớt một ra

Tức thì bài toán trở nên dễ dàng:

 \(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\) 

\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)

\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)

\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)

\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)

Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)

Do đó x + 50 = 0 hay x = -50

Bình luận (0)
H24
17 tháng 5 2019 lúc 15:10

a,\(\frac{x+1}{2019}+1+\frac{x}{1010}+2+\frac{x-2}{674}+3+\frac{x-4}{506}+4=0\)

\(\frac{x+2020}{2019}+\frac{x+2020}{1010}+\frac{x+2020}{674}+\frac{x+2020}{506}=0\)

\(\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{1010}+\frac{1}{674}+\frac{1}{506}\right)=0\)

Vì \(\left(\frac{1}{2019}+\frac{1}{1010}+\frac{1}{674}+\frac{1}{506}\right)\ne0\)

\(x+2020=0\Rightarrow x=-2020\)

Vậy...

Bình luận (0)