Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LM
Xem chi tiết
KC
Xem chi tiết
PQ
30 tháng 4 2023 lúc 15:13

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

Bình luận (0)
KC
Xem chi tiết
PQ
30 tháng 4 2023 lúc 15:13

bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
 cũng bị ép);-;

Bình luận (0)
TV
Xem chi tiết
PL
Xem chi tiết
NA
13 tháng 10 2018 lúc 13:11

Sai đề câu E sửa lại 95 hoặc 93 vì đây là dãy số mũ lẻ. Ta có : 

\(E=3+3^3+3^5+3^7+...+3^{95}\)

\(\Rightarrow\) \(9E=3^3+3^5+3^7+3^9+...+3^{95}+3^{97}\)

\(\Rightarrow\) \(8E=3^{97}-3\)

\(\Rightarrow\) \(E=\frac{3^{97}-3}{8}\)

Bình luận (0)
H24
13 tháng 10 2018 lúc 14:30

\(E=3+3^3+3^5+3^7+.......+3^{95}\)

\(\Rightarrow9E=3^3+3^5+3^7+3^9+...+3^{97}\)

\(\Rightarrow9E-E=\left(3^3+3^5+3^7+3^9+....+3^{97}\right)-\left(3+3^3+3^5+3^7+.....+3^{95}\right)\)

\(\Rightarrow8E=3^{97}-3\)

\(\Rightarrow E=\frac{3^{97}-3}{8}\)

\(F=1+2018+2018^2+......+2018^{2017}\)

\(=2018^0+2018^1+2018^2+....+2018^{2017}\)

\(\Rightarrow2018F=2018^1+2018^2+2018^3+....+2018^{2018}\)

\(\Rightarrow2018F-F=\left(2018^1+2018^2+2018^3+....+2018^{2018}\right)-\left(2018^0+2018^1+2018^2+....+2018^{2017}\right)\)

\(\Rightarrow2017F=2018^{2018}-1\)

\(\Rightarrow F=\frac{2018^{2018}-1}{2017}\)

Bình luận (0)
H24
14 tháng 10 2018 lúc 20:31

a con linh my 6a nề

Bình luận (0)
DL
Xem chi tiết
PH
14 tháng 8 2021 lúc 10:42

Ta có :a)A=(3+5) mũ 3 và B=3 mũ 2+ 5 mũ 2

Hay A= \(3^3+5^3\) >\(3^2+5^2\)

➩ A > B 

Tương tự như vậy câu b lad bằng

Bình luận (0)
NT
14 tháng 8 2021 lúc 13:37

\(A=\left(3+5\right)^3>3^2+5^2=B\)

\(C=\left(3+5\right)^3>3^3+5^3=D\)

Bình luận (0)
Xem chi tiết
H24
21 tháng 6 2019 lúc 20:49

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)

\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)

\(\Rightarrow2S=3^{2020}-3\)

\(\Rightarrow S=\frac{3^{2020}-3}{2}\)

Bình luận (0)
NH
21 tháng 6 2019 lúc 20:52

từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3

Bình luận (0)
NT
21 tháng 6 2019 lúc 20:55

S=3+32+...+32019

Bình luận (0)
Xem chi tiết
H24
21 tháng 6 2019 lúc 21:05

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

Bình luận (0)
H24
21 tháng 6 2019 lúc 21:19

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt

Bình luận (0)
TD
22 tháng 6 2019 lúc 16:02

\(S=3^1+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)

    \(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

      \(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+....+3^{2017}\left(1+3+9\right)\)

     \(=3.13+3^4.13+...+3^{2017}.13\)

      \(=13.\left(3+3^4+...+3^{2017}\right)⋮13\) (đpcm)

Bình luận (0)
NM
Xem chi tiết
LP
24 tháng 9 2017 lúc 14:20

a)\(A=1+3+3^2+...+3^{2018}\)

\(\Rightarrow3A=3.\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2019}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2019}-\left(1+3+3^2+...+3^{2018}\right)\)

\(\Rightarrow2A=3^{2019}-1\)

\(\Rightarrow A=\frac{3^{2019}-1}{2}\)

b) \(B=5+5^2+...+5^{2017}\)

\(\Rightarrow5B=5^2+5^3+...+5^{2018}\)

\(\Rightarrow5B-B=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(\Rightarrow4B=5^{2018}-5\)

\(\Rightarrow B=\frac{5^{2018}-5}{4}\)

Bình luận (0)
OO
24 tháng 9 2017 lúc 14:21

a,A=1+3+32+...+32017

3A=3+32+33+...+32018

3A-A=32018-1

2A=32018-1

A=(32018-1):2

Bình luận (0)