Những câu hỏi liên quan
TK
Xem chi tiết
TT
Xem chi tiết
HP
14 tháng 2 2016 lúc 10:06

ta có: \(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2};\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3};...;\frac{1}{2010^2}=\frac{1}{2010.2010}<\frac{1}{2009.2010}\)

\(\Rightarrow N<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{2009}-\frac{1}{2010}=\frac{1}{1}-\frac{1}{2010}=\frac{2009}{2010}<1\)

=>N<1(đpcm)

Bình luận (0)
NH
Xem chi tiết
NK
24 tháng 3 2016 lúc 19:02

1/22<1/1*2=1/1-1/2

1/32<1/2*3=1/2-1/3

1/42<1/3*4=1/3-1/4

1/20102<1/2009*2010=1/2009-1/2010

1/22+1/32+1/42+...+1/20102<1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010

1/22+1/32+1/42+...+1/2010<1/1-1/2010<1 (dfcm)

Bình luận (0)
NK
24 tháng 3 2016 lúc 19:03

k mình nha 

Bình luận (0)
H24
Xem chi tiết
NL
Xem chi tiết
HT
28 tháng 2 2018 lúc 21:40

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

Bình luận (0)
SU
13 tháng 3 2018 lúc 21:33

=1/2010

Bình luận (0)

\(\frac{A}{B}\)=2011

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
MD
27 tháng 6 2019 lúc 9:47

Xét N :

N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)

Ta có :

\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)

...

\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)

\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)

Cộng vế theo vế của các bất đẳng thức trên , ta có :

\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)

=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

=> N < 1 - \(\frac{1}{2010}\)<1

=> N < 1

Bình luận (0)
ND
18 tháng 6 2019 lúc 11:49

câu này hay thế!

Bình luận (0)
HH
Xem chi tiết
H24
18 tháng 3 2018 lúc 8:52

Ta có: n < 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2008.2009 + 1/2009.2010

          n < 1/1-1/2 + 1/2-1/3 + 1/3-1/4 +...+ 1/2008-1/2009 + 1/2009-1/2010 (công thức)

          n < 1/1- (1/2-1/2)- (1/3-1/3)-...- (1/2009-1/2009)-1/2010 (quy tắc dấu ngoặc)

          n < 1/1 - 1/2010

          n < 2009/2010

Vậy n<2009/2010<1

Bình luận (0)
LM
18 tháng 3 2018 lúc 8:53

ta có \(N=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}.\)

ta lại có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2010^2}< \frac{1}{2009.2010}\)

đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

\(\Rightarrow N< A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)

                 \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

                 \(=1-\frac{1}{2010}< 1\)

hay \(N< 1\left(đpcm\right)\)

Bình luận (0)
TM
Xem chi tiết
SX
Xem chi tiết
TV
30 tháng 4 2018 lúc 11:04

Ta có 

1/2^2<1/1.2

1/3^2<1/2.3

......

1/2009^2<1/2008.2009

1/2010^2<1/2009.2010

=>1/2^2+1/3^2+...+1/2010^2<1/1.2+1/2.3+....+1/2009.2010

=>N<1/1.2+1/2.3+....+1/2009.2010

=>N<1-1/2010

=>N<2009/2010<1

Vậy N<1

Bình luận (0)
NA
16 tháng 3 2019 lúc 21:34

\(N=\) \(\frac{1}{2^2}\) \(+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)

\(N< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

\(N< 1-\frac{1}{2010}\)       

\(N< \frac{2009}{2010}< 1\)

\(\Rightarrow N< 1\)

Bình luận (0)