Violympic toán 6

MN

Bài 1 : Cho N =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)

Hãy chứng minh rằng N<1

MD
27 tháng 6 2019 lúc 9:47

Xét N :

N = \(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\)

Ta có :

\(\frac{1}{2.2}\)< \(\frac{1}{1.2}\)

\(\frac{1}{3.3}\)< \(\frac{1}{2.3}\)

...

\(\frac{1}{2009.2009}\)<\(\frac{1}{2008.2009}\)

\(\frac{1}{2010.2010}\)<\(\frac{1}{2019.2010}\)

Cộng vế theo vế của các bất đẳng thức trên , ta có :

\(\frac{1}{2.2}\)+\(\frac{1}{3.3}\)+\(\frac{1}{4.4}\)+...+\(\frac{1}{2009.2009}\)+\(\frac{1}{2010.2010}\) < \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{2008.2009}\)+\(\frac{1}{2019.2010}\)

=> N < 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

=> N < 1 - \(\frac{1}{2010}\)<1

=> N < 1

Bình luận (0)
ND
18 tháng 6 2019 lúc 11:49

câu này hay thế!

Bình luận (0)