Những câu hỏi liên quan
LT
Xem chi tiết
NH
11 tháng 5 2019 lúc 19:25

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

Bình luận (0)
HP
11 tháng 5 2019 lúc 19:33

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

Bình luận (0)
KM
20 tháng 9 2021 lúc 15:08

Tui hk bít nữa

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NT
Xem chi tiết
XO
21 tháng 5 2021 lúc 10:03

Ta có :\(B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}.....\frac{98^2}{98.99}=\frac{\left(1.2.3.4...98\right).\left(1.2.3.4...98\right)}{\left(1.2.3.4...98\right).\left(2.3.4.5...99\right)}=\frac{1}{99}\)

Lại có A = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)

Lại có \(A:B=\frac{98}{99}:\frac{1}{99}=98\)

=> A = 98B

Bình luận (0)
 Khách vãng lai đã xóa
MI
21 tháng 5 2021 lúc 10:10

các bạn có  về sweet home

Bình luận (0)
 Khách vãng lai đã xóa
JK
Xem chi tiết
TD
Xem chi tiết
NT
28 tháng 3 2017 lúc 19:50

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+.....+\dfrac{2}{97.99}\)


Ta thấy:\(\dfrac{1}{1}-\dfrac{1}{3}=\dfrac{2}{1.3 }\)
\(\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{3.5}\)
............\(\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{2}{97.99}\)
\(\Rightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{97}-\dfrac{1}{99}\) =\(\dfrac{1}{1}-\dfrac{1}{99}\)

=\(\dfrac{99}{99}-\dfrac{1}{99}\)

=\(\dfrac{98}{99}\)
Vậy A=\(\dfrac{98}{99}\)

Bình luận (0)
H24
28 tháng 3 2017 lúc 19:44

A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

A = \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A = \(1-\dfrac{1}{99}\)

A = \(\dfrac{98}{99}\)

Bình luận (0)
TT
28 tháng 3 2017 lúc 19:48

A=\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

A=\(1-\dfrac{1}{99}=\dfrac{98}{99}\)

Bình luận (0)
DP
Xem chi tiết
TK
Xem chi tiết
LV
25 tháng 7 2017 lúc 8:58

Khoảng cách giữa hai thừa số trong mỗi số hạng là 2, nhân 2 vế của A với 3 lần khoảng cách này ta được :

6A=1.3.6 + 3.5.6 + 5.7.6 + ... + 97.99.6

=1.3(5+1) + 3.5(7-1) + 5.7(9-3) + ... + 97.99(101-95)

=1.3.5 + 1.3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99

=1.3.5 + 3 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7+ ... + 97.99.101 - 97.97.99

=3+97.99.101

\(\frac{1+97.33.101}{1}=161651\)

Bình luận (0)
H24
25 tháng 7 2017 lúc 9:01

Ta có :

B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99

6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6

6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )

6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99

6.B = 97.99.101 - ( -1 ) .3.5

6.B = 97.99.101 + 1.3.5

6.B = 969918

=> B = 161653.

Bình luận (0)
H24
9 tháng 12 2017 lúc 17:18

Ta có :
B = 1.3 + 3.5 + 5.7 + 7.9 + ... + 97.99
6.B = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6
6.B = 1.3.[ 5 - (-1) ] + 3.5.( 7 - 1 ) + 5.7.( 9 - 3 ) + ...+ 97.99.( 101 - 95 )
6.B = 1.3.5 - ( -1).3.5 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99
6.B = 97.99.101 - ( -1 ) .3.5
6.B = 97.99.101 + 1.3.5

6.B = 969918
=> B = 16165

k cho mk nha Trần Thế Khoa đẹp trai

Bình luận (0)
GK
Xem chi tiết
KS
3 tháng 4 2017 lúc 11:16

a.  

\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)

\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

b.

\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)

\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)

mk đầu tiên nha bạn

Bình luận (0)
NA
Xem chi tiết
XO
12 tháng 5 2020 lúc 17:37

Ta có : S = 1.3 + 3.5 + 5.7 + .... + 97.99 + 99.101

=> 6S = 1.3.6 + 3.5.6 + 5.7.6 +...+ 97.99.6 + 99.101.6

           = 1.3.(5 + 1) + 3.5.(7 - 1) + 5.7.(9 - 3) + .... + 97.99.(101 - 95) + 99.101.(103 - 97)

           = 3 + 1.3.5 +  3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 97.99.101 - 95.97.99 + 99.101.103 - 97.99.101

           = 3 + 99.101.103

           =  1029900

=> 6S = 1029900

=> S = 171650

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 5 2020 lúc 17:40

Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101

A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)

A = (1^2 + 3^2 + 5^2 + … + 97^2 + 99^2) + 2.(1 + 3 + 5 + … + 97 + 99).

Đặt B = 1^2 + 3^2 + 5^2 + … + 99^2

=> B = (1^2 + 2^2 + 3^2 + 4^2 + … + 100^2) – 2^2.(1^2 + 2^2 + 3^2 + 4^2 + … + 50^2)

Tính dãy tổng quát C = 1^2 + 2^2 + 3^2 + … + n^2

C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]

C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)

C =  = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6

Áp dụng vào B ta được:

B = 100.101.201 : 6 – 4.50.51.101 : 6  = 166650

=> A = 166650 + 2.(1 + 99).50 : 2

=> A = 166650 + 5000 = 172650.

Đ/s: A = 172650.

Bình luận (0)
 Khách vãng lai đã xóa