Tinh tong:
13/3+13/6+13/10+13/15+13/21+13/28+13/36+13/45+13/55
2-5/3+7/6-9/10+11/15-13/21+15/28-17/36+19/45-21/55+23/66
38/25+9/10-11/15+13/21-15/28+17/36-19/45+21/55=
4.24.5^2-(3^3.18+3^3.12)
31.15.7^2.4-31.49.40
1+2+3+4+5+6+7+8+9+10
1+3+5+7+9+11+13+15+19
2+6+10+14+22+23+26+34
5+8+11+14+17+20+23+26+29
1+6+11+16+21+26+31+36+41+47+51
10+13+16+19+22+25+28+31+34+37+40
5+7+9+11+13+15+17+3+8+13+18+23+28
4+7+10+13+16+19+5+9+13+17+21+25
4.24.52-(33.18+33.12)
=4.24.25-[27.(18+12)]
=(4.25).24-[27.30]
=100.24-810
=2400-810
=1590
4.24.5^2-(3^3.18+3^3.12)
31.15.7^2.4-31.49.40
1+2+3+4+5+6+7+8+9+10
1+3+5+7+9+11+13+15+19
2+6+10+14+22+23+26+34
5+8+11+14+17+20+23+26+29
1+6+11+16+21+26+31+36+41+47+51
10+13+16+19+22+25+28+31+34+37+40
5+7+9+11+13+15+17+3+8+13+18+23+28
4+7+10+13+16+19+5+9+13+17+21+25 = 1590
#HT#
giải hộ cho mik với
P=2-5/3+7/6-9/10+11/15-13/21+15/28-117/36+19/45-21/55
đúng mik sẽ tick cho
oi dòi ơi bấm máy tính mỏi tay lun:
=-194/99 nhá
Bạn ơi đừng nghiện nữa
:v mik không nghiện :>
Cho A = 13/25 + 9/10 - 11/15 + 13/21 - 15/28 + 17/36 - ... + 197/4851 - 199/4950 chứng minh rằng A > 9/10
Để chứng minh A > 9/10, ta phải tính giá trị của biểu thức A và so sánh với 9/10.
Đầu tiên, ta cần nhận ra rằng các phân số có chung mẫu số 3, 4, 5, 6, 7, 8... nghĩa là chúng có thể được rút gọn thành dạng a/b với b là một trong các số nguyên tố này.
Ta có thể rút gọn tử số và mẫu số của mỗi phân số và có:
A = (507 + 2205 - 1830 + 2730 - 1500 + 1701 - ... + 959757 - 986100)/118592250
Đơn giản hóa tử số, ta được:
A = (-199 +197 +17 - 15 + 13 - 11+9/2)/11859250
Phát biểu đơn giản của A là
A = 247839/263450750.
Vì A > 0 vì tất cả các số hạng đều là các số dương,
ta sẽ chứng minh rằng A > 9/10 bằng cách so sánh hai giá trị này:
A > 9/10
⇔ 247839/263450750 > 9/10
⇔ 247839 > 236105 .
Vì điều kiện cuối cùng đúng, ta kết luận rằng A > 9/10.
Tim X
a,X - 20/11 x 13 - 20/13 x 15 - 20/15 x 17 -...-20/53 x 55 = 3/11
b,1/21 + 1/28 +1/36 + ... +2/Xx(x + 1) = 2/9
Ta có : A=20/11×13 + 20/13×15 +20/15×17+...+20/53×55
A = 10 ×( 2/11×13+2/13×15+...12/53×55)
A = 10 ×(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)
A = 10 × (1/11-1/55)
A =10 × 4/55
A = 8/11
cho A=1,01+1,02+1,03+...+9,98+9,99+10
B=2-5/3+7/6-9/10+11/15-13/21+15/28-17/36+19/45
tinh 2A+455/3(B)
C= 2-\(\dfrac{5}{3}\)+\(\dfrac{7}{6}\)-\(\dfrac{9}{10}\)+\(\dfrac{11}{15}\)-\(\dfrac{13}{21}\)+\(\dfrac{15}{28}\)-\(\dfrac{17}{36}\)+\(\dfrac{19}{45}\)
tính C
\(=2-\left(\dfrac{5}{3}-\dfrac{7}{6}+\dfrac{9}{10}-...-\dfrac{19}{45}\right)\)
\(=2-2\left(\dfrac{5}{6}-\dfrac{7}{12}+\dfrac{9}{20}-...-\dfrac{19}{90}\right)\)
\(=2-2\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{5}-...-\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=2-2\cdot\dfrac{4}{10}=2-\dfrac{8}{10}=2-\dfrac{4}{5}=\dfrac{6}{5}\)
S = 38/25 + 9/10-11/15+13/21+15/28+17/36-19/45 +...-199/4950
#)Giải :
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-\frac{19}{45}+...-\frac{119}{4950}\)
\(S=\frac{38}{25}+\left(\frac{9}{10}-\frac{11}{15}\right)+\left(\frac{13}{21}-\frac{15}{28}\right) +\left(\frac{17}{36}-\frac{19}{45}\right)+...+\left(\frac{197}{4851}-\frac{199}{4950}\right)\)
Ta thấy :
\(\left(\frac{9}{10}-\frac{11}{15}\right)=\frac{1}{6}=\frac{1}{\left(2.3\right)}=\frac{1}{2}-\frac{1}{3}\)
\(\left(\frac{13}{21}-\frac{15}{28}\right)=\frac{1}{12}=\frac{1}{\left(3.4\right)}=\frac{1}{3}-\frac{1}{4}\)
\(\left(\frac{17}{36}-\frac{19}{45}\right)=\frac{1}{20}=\frac{1}{\left(4.5\right)}=\frac{1}{4}-\frac{1}{5}\)
..........................................................
\(\left(\frac{197}{4851}-\frac{199}{4950}\right)=\frac{1}{2450}=\frac{1}{\left(49.50\right)}=\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow S=\frac{38}{25}+\left[\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+...+\left(\frac{1}{49}-\frac{1}{50}\right)\right]\)
\(\Rightarrow S=\frac{38}{25}+\left[\frac{1}{2}-\frac{1}{50}\right]\)
\(\Rightarrow S=\frac{38}{25}+\frac{24}{50}\)
\(\Rightarrow S=2\)
#~Will~be~Pens~#