Những câu hỏi liên quan
H24
Xem chi tiết
HA
Xem chi tiết
BL
Xem chi tiết
EC
14 tháng 8 2020 lúc 22:08

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)

=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

Dấu "=" xảy ra <=> 2x - 1 = 0 <=>  x = 1/2

Vậy MaxB = 5/3 khi x = 1/2

b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40

P = 2x(x + y - 1) + y2 + 1

P = 2x2 + 2xy - 2x + y2  + 1

P = (x2 + 2xy + y2) + (x2 - 2x + 1)

P = (x + y)2 + (x - 1)2 \(\ge\)0

=> P luôn nhận giá trị không âm với mọi x;y

Bình luận (0)
 Khách vãng lai đã xóa
NN
15 tháng 8 2020 lúc 8:28

a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)

\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)

hay \(B\le\frac{5}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)

b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:

\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)

- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)

Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)

hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
PT
25 tháng 5 2015 lúc 7:38

x= -5 phải ko bn để mình còn giải 

Bình luận (0)
HL
25 tháng 5 2015 lúc 8:45

1.Thay x=5,y=3 vào đa thức P,ta được:

2x(x+y-1)+y^2+1

=2.5(2+3-1)+3^2+1

=10.4+9+1

=40+(9+1)

=50

Bình luận (0)
H24
26 tháng 5 2015 lúc 7:07

.Thay x=5,y=3 vào đa thức P,ta được:

2x(x+y-1)+y^2+1

=2.5(2+3-1)+3^2+1

=10.4+9+1

=40+(9+1)

=50

Bình luận (0)
HT
Xem chi tiết
NT
14 tháng 3 2022 lúc 7:11

a: \(=-6x^5y^6z\)

Bậc là 12

b: \(75x^2y^2+25x^2y^2=100x^2y^2\)

 

Bình luận (0)
VK
Xem chi tiết
NT
19 tháng 7 2021 lúc 10:17

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y 

Bình luận (0)
NN
Xem chi tiết
SN
5 tháng 4 2020 lúc 18:57

 T=M−N=12x2−16xy+18y2−3x2+16xy−14y2

=9x2+4y2

Mà 9x2> 0 ; 4y2> 0 => T=9x2+4y2> 0

Vậy T không nhận giá trị âm x và y

Bình luận (0)
 Khách vãng lai đã xóa
SN
5 tháng 4 2020 lúc 18:58

 T=M−N=12x2−16xy+18y2−3x2+16xy−14y2T=M−N=12x2−16xy+18y2−3x2+16xy−14y2

=9x2+4y2=9x2+4y2

Mà {9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y{9x2≥04y2≥0⇒T=9x2+4y2≥0∀x,y

Vậy T không nhận giá trị âm ∀x,y∀x,y

Bình luận (0)
 Khách vãng lai đã xóa
NN
5 tháng 4 2020 lúc 18:59

M=12x2−16xy+18y2

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
HC
Xem chi tiết
HP
6 tháng 7 2016 lúc 14:53

\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)

Vậy ........

\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)

Vậy........

\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)

\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)

Vậy.......

Bình luận (0)