A=405n+ 2405+ 1737 CMR A chia hết cho10 (n thuộc N)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng tỏ rằng: 405n + 2405 + 1737 (n E N) ko chia hết cho 10
CMR:3n+22n+2+3n-2n chia hết cho10 ,với mọi n thuộc Nsao
tìm 2 chữ số tận cùng của số 5n n ở trên số 5 nhé n>1
chứng tỏ rằng các tổng,hiệu sau không chia hết cho 10 A=98*96*94*92-91*93*95*97
B=405n n ở trên nhé+2405 405 ở trên nhé+m2 2 ở trên nhé m,n thuộc N;
Chứng tỏ rằng ,các số có dạng :
a, A=22n - 1 chia hết cho 5 ( n thuộc N ,n lớn hơn hoặc bằng 2)
b, B=24n +4 chia hết cho10 ( n thuộc N , n lớn hơn hoặc bằng 1)
c, H=92n +3 chia hết cho 2 ( n thuộc N , n lớn hơn hoặc bằng 1 )
CMR tổng 5 số tự nhiên liên tiếp chia hết cho 5
CMR n2+n chia hết cho 2 với nn thuộc N
CMR a2b + b2a chia hết cho 2 với a,b thuộc N
CMR 51n+47102chia hết cho 10 (n thuộc N)
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)
4. chứng minh rằng
a) CMR tổng 5 số tự nhiên chia hết cho 5
b)CMR n2+n chia hết cho 2 với n thuộc N
c) CMR a2b + b2a chia hết cho 2 với a,b thuộc N
d) CMR 51n + 47102 chia hết cho 10 (n thuộc N)
CMR: chứng minh rằng
a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4
Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4
= (a+a+a+a+a) + (1+2+3+4)
= 5a + 10
= 5(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên chia hết cho 5
CMR : a) 99 mũ 20 - 11 mũ 9 chia hết cho 2 b) 99 mũ 8 - 66 mũ 2 chia hết cho 5 c) 2011 mũ 10 -1 chia hết cho10
Chứng minh rằng :
a)5^2005-5^2004+5^2003 chia hết cho 7.
b)"3^3.n+2"-"2^3.n+2"+"3^3.n"-"2^3.n" chia hết cho10 (với n là số tự nhiên khác 0).
giúp với,mình cần gấp!
a: \(=5^{2003}\left(5^2-5+1\right)\)
\(=5^{2003}\cdot21⋮7\)