Những câu hỏi liên quan
H24
Xem chi tiết
SG
26 tháng 7 2016 lúc 10:28

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\frac{2013}{1}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+1\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

=> x = 2014

Đề bài bn chép sai 1 chút nên mk sửa lại và lm như trên

Bình luận (0)
H24
26 tháng 7 2016 lúc 10:38

cam on ban

Bình luận (0)
H24
30 tháng 7 2016 lúc 17:22

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\frac{2013}{1}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+1\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)

\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right).x=2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

\(\Rightarrow x=2014\)

Bình luận (0)
CM
Xem chi tiết
NC
Xem chi tiết
TQ
18 tháng 8 2017 lúc 21:43

=1

minh chac chan lun k mik nha bn
 

Bình luận (0)
DK
Xem chi tiết
NT
Xem chi tiết
MN
23 tháng 2 2017 lúc 20:54

trước tiên bạn phải tính:

2013/1+2012/2+2011/3+.....+2/2012+1/2013

=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}

=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014

=2014.(1/2+1/3+....+1/2012+1/20131/2014

suy ra x=2014

Bình luận (1)
TP
Xem chi tiết
TD
Xem chi tiết
SM
Xem chi tiết
BB
Xem chi tiết
TH
14 tháng 12 2023 lúc 19:24

Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)

Áp dụng bất đẳng thức Cauchy, ta có:

\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)

Cộng vế theo vế, ta được:

\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)

Vậy....

Bình luận (0)