Cho x,y dương, biểu thưc 2(xy+1)>3(x+y)
Tim x,y để đa thuc P=x^2+y^2 lớn nhát
1 tim tông cua cac đa thưc sau
a P=x^2y+x^3+3và Q=x^3+xy^2-xy-6
b M=x^y+0,5xy^3-7,5x^3y^2+x^3và N=3xy^3-x^2y=5,5x^3y^2
a. P+Q = x2y+x3+3+x3+xy2-xy-6
P+Q = x2y+x3+x3+xy2-xy+3-6
P+Q = x2y+2x3+xy2-xy-3
Còn câu b bị lỗi đấy bạn.
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
Cho hai so Thưc duong x, y thoa man x>=2y.Tim gia tri nho nhat cua bieu thuc P=(2x^2+y^2-2xy):xy
Tìm GTNN của biểu thưc;x^2+y^2-xy-x+y+1
đat a=......
nhan ca 2 ve cua a voi 2 ta dc 2a=
ban tach ra de dc hang dang thuc roi ket luan
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
Cho x,y la cac so thuc duong. Tim gia tri nho nhat cua bieu thuc:
\(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
đề không sai đâu bạn à. Đây là đề toán chuyên ở tỉnh mình mà
Theo B.C.S ta có \(\sqrt{2\left(x^2+y^2\right)}\)\(\ge\)(\(\sqrt{\left(x+y\right)^2}\)\(=x+y\)
\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\ge\left(\frac{1}{x}+\frac{1}{y}\right)\left(x+y\right)=2+\frac{x^2+y^2}{xy}\)
\(\Leftrightarrow\)\(P\ge2+\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}+\frac{3\left(x^2+y^2\right)}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+2\sqrt{\frac{xy}{x^2+y^2}\times\frac{x^2+y^2}{4xy}}\)\(+\frac{3\times2xy}{4xy}\)
\(\Leftrightarrow\)\(P\ge2+1+\frac{3}{2}=\frac{9}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow\)x=y
Tìm điều kiện của x và y để biểu thức sau có giá trị dương: \(A=\left(\dfrac{x^2-xy}{y^2+xy}-\dfrac{x^2-y^2}{x^2+xy}\right):\left(\dfrac{y^2}{x^3-xy^2}+\dfrac{1}{x-y}\right)\)
Cho x,y là các số thực dương thỏa mãn xy+1≤ x. Tìm giá trị lớn nhất của biểu thức Q=\(\dfrac{x+y}{\sqrt{3x^2-xy+y^2}}\)
\(x\ge xy+1\Rightarrow1\ge y+\dfrac{1}{x}\ge2\sqrt{\dfrac{y}{x}}\Rightarrow\dfrac{y}{x}\le\dfrac{1}{4}\)
\(Q^2=\dfrac{x^2+2xy+y^2}{3x^2-xy+y^2}=\dfrac{\left(\dfrac{y}{x}\right)^2+2\left(\dfrac{y}{x}\right)+1}{\left(\dfrac{y}{x}\right)^2-\dfrac{y}{x}+3}\)
Đặt \(\dfrac{y}{x}=t\le\dfrac{1}{4}\)
\(Q^2=\dfrac{t^2+2t+1}{t^2-t+3}=\dfrac{t^2+2t+1}{t^2-t+3}-\dfrac{5}{9}+\dfrac{5}{9}\)
\(Q^2=\dfrac{\left(4t-1\right)\left(t+6\right)}{9\left(t^2-t+3\right)}+\dfrac{5}{9}\le\dfrac{5}{9}\)
\(\Rightarrow Q_{max}=\dfrac{\sqrt{5}}{3}\) khi \(t=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(2;\dfrac{1}{2}\right)\)
rut gọn cac bieu thưc sau rồi tinh gia trị biểu thưc vơi x= -2 1/3
a. ( 2x - 3). ( 2x + 3) - ( x + 5 )2 - ( x - 1).( x + 2) vs x = -2 1/3
b. ( x + 2y ).( x2 - 2xy + 4y2 )-( x - y ). ( x2 - xy - y2 )
c. x2 . ( x+ y ) + y2 .( x+ y) + 2x2y + 2xy2
d. ( x3 + 4x2 - x - 4) : ( x + 4)