Những câu hỏi liên quan
H24
Xem chi tiết
LN
Xem chi tiết
PN
Xem chi tiết
XT
29 tháng 4 2017 lúc 22:25

Đkxđ: a khác 0,5

\(A=\dfrac{\text{40|2a-1|+15}}{10a-5}=\dfrac{40\left|2a-1\right|+15}{5\left(2a-1\right)}=\dfrac{3}{2a-1}_-^+8\)

(Mình để cộng trừ 8 là do còn tùy vào 2a-1 dương hay âm nữa)

Để A nguyên thì \(\dfrac{3}{2a-1}\)nguyên <=>3 chia hết cho 2a-1 <=>2a-1 là Ư(3)

Mà Ư(3)={-3;-1;1;3}

Ta có bảng sau:

2a-1 -3 -1 1 3
a -1 0 1 2

Do a là số tự nhiên và a khác 0,5=>a={0;1;2} thì A nguyên

Bình luận (0)
NT
Xem chi tiết
TT
Xem chi tiết
H24
22 tháng 4 2018 lúc 22:40

Câu 1:

Trong 4 điểm ta chọn được 4 điểm làm đỉnh thứ nhất của tam giác, sau đó ta còn 3 điểm cho đỉnh thứ hai và 2 điểm cho đỉnh thứ ba.

Mà nếu như vậy thì mỗi tam giác bị lặp lại đúng sáu lần. Cho nên ta có công thức tính tam giác là:

\(\frac{4.3.2}{6}=\frac{24}{6}=4\)( tam giác )

Mình không hiểu rõ câu hỏi của cậu lắm nên cứ đọc đỡ tham khảo cách tính tam giác của mình nhé!

Câu 2

Vì \(|2a-1|\ge0\)với mọi a.

=> \(2a-1< 0\)hoặc \(2a-1\ge0\)

Vậy ta có hai trường hợp

TH1: Nếu 2a - 1 < 0 ( với ĐK: a <1/2 )

=> \(\frac{40|2a-1|+15}{10a-5}=\frac{40\left(-2a+1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{10a-5}\)

\(=\frac{-40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{-40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=-8+\frac{3}{2a-1}\)

Vì -8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì \(\frac{3}{2a-1}\)phải thuộc Z.

=> \(3⋮2a-1\)

=> 2a -1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc { 1;0;2;-1 }

Đối chiếu với ĐK a < 1/2 thì chỉ có 0 và -1 thỏa mãn

=> x = 0 ; x = -1

TH2: Nếu \(2a-1\ge0\)( với ĐK: a > hoặc bằng 1/2 )

\(=>\frac{40|2a-1|+15}{10a-5}=\frac{40\left(2a-1\right)+15}{5\left(2a-1\right)}\)

\(=\frac{40\left(2a-1\right)}{5\left(2a-1\right)}+\frac{15}{5\left(2a-1\right)}\)

\(=8+\frac{3}{2a-1}\)

Vì 8 thuộc Z

=> Để biểu thức trên có giá trị nguyên thì 3/2a-1 phải thuộc Z

=> 3 chia hết cho 2a - 1

=> 2a-1 thuộc Ư(3)

=> 2a - 1 thuộc { 1;-1;3;-3 }

=> 2a thuộc { 2;0;4;-2}

=> a thuộc {1;0;2;-1}

Đối chiếu điều kiện a lớn hơn hoặc bằng 1/2 thì 1 và 2 thỏa mãn.

Bình luận (0)
MD
22 tháng 4 2018 lúc 21:41

1) đáp án D

2) mình hôm nay lười lắm éo muốn làm thông cảm

Bình luận (0)
NS
Xem chi tiết
DT
10 tháng 1 2021 lúc 21:42

a) ĐKXĐ: a2-1 ≠0 ⇔ (a-1)(a+1)≠0 ⇔\(\left[{}\begin{matrix}a-1\ne0\\a+1\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ne1\\a\ne-1\end{matrix}\right.\)

b) A=\(\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\) , a≠1, -1

      =\(\dfrac{2a^2}{\left(a-1\right)\left(a+1\right)}-\dfrac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a\left(a-1\right)+a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2-a^2+a+a^2+a}{\left(a-1\right)\left(a+1\right)}\)

      =\(\dfrac{2a^2+2a}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\) =\(\dfrac{2a}{a-1}\)

vậy A =\(\dfrac{2a}{a-1}\) với a≠1,-1.

c) Có:A= \(\dfrac{2a}{a-1}\) = \(\dfrac{2a-2+2}{a-1}=\dfrac{2\left(a-1\right)+2}{a-1}=2+\dfrac{2}{a-1}\)

Để a∈Z thì a-1 ∈ Z ⇒ (a-1) ∈ Ư(2) =\(\left\{1;-1;2;-2\right\}\)

Ta có bảng sau:

a-11-12-2
a203-1
Thử lạiTMTMTMko TM(vì a≠-1

Vậy để biểu thức A có giá trị nguyên thì a∈\(\left\{2;0;3\right\}\)

 

Bình luận (0)
NT
10 tháng 1 2021 lúc 20:58

a) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)

b) Ta có: \(A=\dfrac{2a^2}{a^2-1}-\dfrac{a}{a+1}+\dfrac{a}{a-1}\)

\(=\dfrac{2a^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}+\dfrac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2-a^2+a+a^2+a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a^2+2a}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\dfrac{2a}{a-1}\)

c) Để A nguyên thì \(2a⋮a-1\)

\(\Leftrightarrow2a-2+2⋮a-1\)

mà \(2a-2⋮a-1\)

nên \(2⋮a-1\)

\(\Leftrightarrow a-1\inƯ\left(2\right)\)

\(\Leftrightarrow a-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow a\in\left\{2;0;3;-1\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{0;2;3\right\}\)

Vậy: Để A nguyên thì \(a\in\left\{0;2;3\right\}\)

Bình luận (2)
PC
Xem chi tiết
DL
Xem chi tiết
NH
Xem chi tiết
NH
11 tháng 12 2019 lúc 12:40

Ta có :

\(A=\frac{a^2+2a}{2a+10}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

a) Giá trị của biểu thức A xác định 

\(\Leftrightarrow\hept{\begin{cases}a+5\ne0\\a\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}}\)

Vậy để giá trị của biểu thức A xác định \(\Leftrightarrow\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

ĐKXĐ : \(\hept{\begin{cases}a\ne-5\\a\ne0\end{cases}}\)

b) Ta có :

\(A=\frac{a^2+2a}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+2a\right)+2\left(a+5\right)\left(a-5\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+2a^2+2\left(a^2-25\right)+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a^3+4a^2-50+50-5a}{2a\left(a+5\right)}\)

\(A=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

\(A=\frac{a^2+5a-a-5}{2\left(a+5\right)}\)

\(A=\frac{\left(a+5\right)\left(a-1\right)}{2\left(a+5\right)}=\frac{a-1}{2}\)

c) Thay a = -1 ( Thỏa mãn ĐKXĐ ) vào biểu thức A ta có :

\(A=\frac{-1-1}{2}=-1\)

Vậy tại a = -1 thì giá trị của biểu thức A là - 1

d) Cho A = 0 , ta có :

\(\frac{a-1}{2}=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)( Thỏa mãn ĐKXĐ )

Vậy a = 1 thì giá trị của biểu thức A = 0 .

Bình luận (0)
 Khách vãng lai đã xóa
H24
10 tháng 12 2019 lúc 21:46

\(a.ĐKXĐ:\)\(2a+10\ne0\)            \(a\ne-5\)

                 \(a\ne0\)               \(\Leftrightarrow\)\(a\ne0\)     \(\Leftrightarrow\)\(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

                 \(2a\left(a+5\right)\ne0\)        \(\hept{\begin{cases}a\ne0\\a\ne-5\end{cases}}\)

\(b.A=\frac{a\left(a+2\right)}{2\left(a+5\right)}+\frac{a-5}{a}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

     \(=\frac{a\left(a+2\right)a}{2a\left(a+5\right)}+\frac{\left(a-5\right)2\left(a+5\right)}{2a\left(a+5\right)}+\frac{5\left(10-a\right)}{2a\left(a+5\right)}\)

   \(=\frac{a^3+2a^2+\left(2a-10\right)\left(a+5\right)+5\left(10-a\right)}{2a\left(a+5\right)}\)   

   \(=\frac{a^3+2a^2+2a^2+10a-10a-50+50-5a}{2a\left(a+5\right)}\)

   \(=\frac{a^3+4a^2-5a}{2a\left(a+5\right)}\) 

   \(=\frac{a\left(a^2+4a-5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a\left(a-1\right)\left(a+5\right)}{2a\left(a+5\right)}\)

   \(=\frac{a-1}{2}\)với \(x\ne0\)và \(x\ne-5\)

\(c.\)Thay \(a=-1\left(t/mđk\right)\Leftrightarrow\frac{a-1}{2}\Rightarrow\frac{-1-1}{2}\)

                                          \(=-1\left(t/mđk\right)\)

\(d.A=0\Leftrightarrow A=\frac{a-1}{2}=0\)

                    \(\Rightarrow a-1=2.0\)

                    \(\Rightarrow a-1=0\)

                    \(\Rightarrow a=1\left(t/mđk\right)\)

Bình luận (0)
 Khách vãng lai đã xóa