chứng minh
1/2! +2/3! +3/4! + .... + 2016/2017! < 1
Cho P= 1^2017+2^2017+3^2017+...+2016^2017, Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
sử dụng đồng dư thức hoặc hằng đẳng thức
Cho P=\(1^{2017}+2^{2017}+3^{2017}+...+2016^{2017}\), Q= 1+2+3+4+...+2016. Chứng minh P chia hết cho Q
Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
\(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
\(=2016.504\left(mod2^4\right)\)
\(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
\(a^n+b^n\) chia hết cho a+b với n lẻ
áp dụng cái trên là đc nhé bạn
Chứng minh: 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2017^2 < 2016/2017
giups minh voi
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A< 1-\frac{1}{2017}=\frac{2016}{2017}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}< \frac{2016}{2017}\left(đpcm\right)\)
Chứng minh rằng F= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+5+6+...+2017)<2016/2017
chứng minh rằng:1/2! + 2/3! + 3/4! + ..... + 2016/2017!
cho P=1^2017 +2 ^2017 + ... + 2016^2017 ; Q = 1+2+3+...+2016. Chứng minh rằng P chia hết cho Q
ngu người bài này mà không biết giải
Bạn Nguyễn Minh Phương kia tưởng mik học giỏi lắm à mà chê người khác , chỉ hok giỏi hơn vài người thôi bỏ tính đó đi
Cho A = 1/2^2 + 1/ 3^2 + 1/4^2 + ... + 1/2016^2 + 1/2017^2 . Chứng minh A - 1 < 0
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)
Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)
Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)
Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)
Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1
Suy ra A - 1 < 0
Vậy A - 1 < 0
Cho B=1/3+1/3^2+1/3^3+1/3^4+...+1/3^2016+1/3^2017.
Chứng minh rằng B<1/2
Giúp minh nhé . Mình cảm ơn !
Bài làm:
Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)
=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)
=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)
<=> \(2B=1-\frac{1}{3^{2017}}\)
=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)
=> \(B< \frac{1}{2}\)
cho B=(1+1/2+1/3+1/4+...+1/99).2016^2017. chứng minh A hết cho 11