Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PB
Xem chi tiết
CT
12 tháng 10 2019 lúc 7:55

Đáp án B

Từ giả thiết

2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018 ⇔ 2017 1 − y 1 − y 2 + 2018 = 2017 x x 2 + 2018   *  

Xét hàm số f t = 2017 t t 2 + 2018  với t ∈ 0 ; 1  

⇒ f ' t = 2017 t ln 2017 t 2 + 2018 + 2 t .2017 t > 0  

⇒ f t đồng biến trên 0 ; 1 .  Do đó (*)  ⇔ 1 − y = x ⇔ x + y = 1.

Ta có: 0 ≤ x y ≤ x + y 2 4 = 1 4 .  Đặt  m = x y ∈ 0 ; 1 4 . Khi đó :

S = 16 x 2 y 2 + 34 x y + 12 y + x y + x 2 − 3 x y = 16 m 2 − 2 m + 12 = g m  

Xét hàm g m  trên đoạn

0 ; 1 4 ⇒ g ' m = 32 m − 2 → g ' m = 0 ⇔ m = 1 16  

Lúc này

g 0 = 12 , g 1 4 = 25 2 , g 1 16 = 191 16 ⇒ M = 25 2 m = 191 16 ⇒ M + m = 391 16 .

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2017 lúc 4:52

Đáp án B

Từ giả thiết

Xét hàm số

Do đó  (*)

Xét hàm g(m) trên đoạn

Lúc này

Bình luận (0)
NL
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 1 2017 lúc 18:04

Chọn D

Bình luận (0)
PB
Xem chi tiết
CT
18 tháng 12 2018 lúc 5:32

Đáp án B

Ta có  2017 1 − x − y = x 2 + 2018 y 2 − 2 y + 2019 ⇔ 2017 1 − y 2017 x = x 2 + 2018 1 − y 2 + 2018

2017 x x 2 + 2018 = 2017 1 − y 1 − y 2 + 2018 ⇔ f x = f 1 − y

Xét hàm số f t = 2017 t t 2 + 2018 = t 2 .2017 t + 2018.2017 t , có

                  f ' t = 2 t .2017 t + t 2 .2017 t . ln 2017 + 2018.2017 t . ln 2017 > 0 ; ∀ t > 0

Suy ra f(t) là hàm đồng biến trên 0 ; + ∞  mà  f x = f 1 − y ⇒ x + y = 1

Lại có  P = 4 x 2 + 3 y 4 y 2 + 3 x + 25 x y = 16 x 2 y 2 + 12 x 3 + 12 y 3 + 34 x y

16 x 2 y 2 + 12 x + y 3 − 3 x y x + y + 34 x y = 16 x 2 y 2 + 12 1 − 3 x y + 34 x y = 16 x 2 y 2 − 2 x y + 12

Mà 1 = x + y ≥ 2 x y ⇔ x y ≤ 1 4  nên đặt t = x y ∈ 0 ; 1 4 khi đó  P = f t = 16 t 2 − 2 t + 12

Xét hàm số f t = 16 t 2 − 2 y + 12  trên 0 ; 1 4  ta được  min 0 ; 1 4 f t = f 1 16 = 191 16 max 0 ; 1 4 f t = f 1 4 = 25 2

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 3 2019 lúc 3:27

Do x+ y= 1 nên

S = 16 x 2 y 2 + 12 ( x + y ) ( x 2 - x y + y 2 ) + 34 x y = 16 x 2 y 2 + 12 ( x + y ) 2 - 3 x y + 34 x y ,   d o   x + y = 1 = 16 x 2 y 2 - 2 x y + 12

Đặt t= xy . Do x≥ 0 ; y≥0  nên

  0 ≤ x y ≤ ( x + y ) 2 4 = 1 4 ⇒ t ∈ 0 ; 1 4

Xét hàm số f(t) = 16t2- 2t + 12  trên [0 ; 1/4].

Ta có f’ (t) = 32t- 2 ; f’(t) =0 khi t= 1/ 16  .

Bảng biến thiên

Từ bảng biến thiên ta có:

m i n 0 ; 1 4 f ( t ) = f ( 1 16 ) = 191 16 ;         m a x 0 ; 1 4 f ( t ) = f ( 1 4 ) = 25 2

 

Vậy giá trị lớn nhất của S là 25/2 đạt được khi 

x + y = 1 x y = 1 4 ⇔ x = 1 2 y = 1 2

giá trị nhỏ nhất của S  là 191/ 16 đạt được khi

Chọn A.

Bình luận (0)
CT
Xem chi tiết
AH
13 tháng 8 2021 lúc 17:13

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

Bình luận (0)
AH
13 tháng 8 2021 lúc 17:15

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

Bình luận (1)
IY
Xem chi tiết
NM
Xem chi tiết
IS
2 tháng 3 2020 lúc 10:27

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa