Những câu hỏi liên quan
GN
Xem chi tiết
ND
Xem chi tiết
PA
26 tháng 4 2016 lúc 21:22

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

Bình luận (0)
NH
26 tháng 4 2016 lúc 21:08

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1

Bình luận (0)
PA
26 tháng 4 2016 lúc 21:11

a)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)=\(\frac{99}{100}<1\)

Bình luận (0)
NL
Xem chi tiết
PQ
22 tháng 2 2018 lúc 20:28

Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)

Hình như có gì đó sai sai :')

Bình luận (0)
H24
22 tháng 2 2018 lúc 20:32

A+1/4=1/2+1/32+......+1/20112

A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011

A+1/4<1-1/2011<1=3/4+1/4

A<1/4 (ĐPCM)

Bình luận (0)
H24
22 tháng 2 2018 lúc 20:33

NHẦM BẠN ƠI     A<3/4

Bình luận (0)
LT
Xem chi tiết
LT
9 tháng 5 2018 lúc 22:19

câu a nè:

Bình luận (0)
LT
9 tháng 5 2018 lúc 22:28

Giúp mình nha mấy bạn

Bình luận (0)
LT
9 tháng 5 2018 lúc 22:40

mình cần gấp

AI NHANH MÌNH TÍCH CHO!

Bình luận (0)
ND
Xem chi tiết
H24
23 tháng 5 2018 lúc 10:07

Làm theo cách của Trắng nha , 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\left(Đpcm\right)\)

Bình luận (0)
KS
23 tháng 5 2018 lúc 10:15

Ta có:  \(\frac{1}{2^2}=\frac{1}{2^2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

             ...................

             \(\frac{1}{2019^2}< \frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)

\(=\frac{1}{4}+\frac{2}{4}-\frac{1}{2019}\)

\(=\frac{3}{4}-\frac{1}{2019}\)\(< \frac{3}{4}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)

                                              Điều phải chứng minh

Bình luận (0)
H24
23 tháng 5 2018 lúc 10:21

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\)

Ta có:

\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)

\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

....

\(\frac{1}{2019^2}=\frac{1}{2019.2019}< \frac{1}{2018.2019}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow A< 1-\frac{1}{2019}\)

\(\Rightarrow A< \frac{2018}{2019}\)

đến đây mới thấy mik sai ,xin lỗi

Bình luận (0)
NN
Xem chi tiết
KB
22 tháng 5 2018 lúc 10:58

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2019^2}\)

\(\Rightarrow A=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2019}\right)\)

\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\)

\(\Rightarrow A< \frac{3}{4}\)

Bình luận (0)
H24
22 tháng 5 2018 lúc 10:56

đặt A=1/2^2+....+1/2019^2

vì 1/2^2+....+1/2019^2<1/1.2+1/2.3+....+1/2018.2019

=> A<1/1-1/2+1/2-1/3+.....+1/2018-1/2019

=> A<1-1/2019=2018/2019<3/4.

=> A<3/4. 

vậy 1/2^2+....+1/2019^2<3/4

Bình luận (0)
NT
22 tháng 5 2018 lúc 11:12

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2018}-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)

\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{2018}{2019}\)

Mà: \(\frac{3}{4}=\frac{2016}{2688}< \frac{2017}{2688}< \frac{2017}{2019}< \frac{2018}{2019}\)

\(\Rightarrow\frac{3}{4}< \frac{2018}{2019}\)

Bình luận (0)
H24
Xem chi tiết
DD
25 tháng 9 2020 lúc 16:38

Phần C đề thiếu

\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)

\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)

\(\Rightarrow4D=3-\frac{203}{3^{100}}\)

\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 9 2020 lúc 9:41

sửa rồi nhá bn

Bình luận (0)
 Khách vãng lai đã xóa
DD
27 tháng 9 2020 lúc 14:50

\(C=\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(\Rightarrow2C=1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)

\(\Rightarrow2C+C=(1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}})+\)\((\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}})\)

\(\Rightarrow3C=1-\frac{1}{100}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{300}< \frac{1}{3}\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
27 tháng 2 2016 lúc 14:20

Ta có : \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{2011^2}<\frac{1}{2010.2011};\frac{1}{2012^2}<\frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010+2011}+\frac{1}{2011.2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<\frac{1}{1}-\frac{1}{2012}\)

Vì \(\frac{1}{2012}>0\) => \(\frac{1}{1}-\frac{1}{2012}<1\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}<1\)

Bình luận (0)
DN
27 tháng 2 2016 lúc 14:52

zee that tri tuệ ve toan day so; ok 10đ

Bình luận (0)
BV
Xem chi tiết
NP
5 tháng 7 2018 lúc 21:09

Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2011.2012}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

Bình luận (0)
IY
5 tháng 7 2018 lúc 21:10

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2011^2}< \frac{1}{2010.2011};\)\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\left(đpcm\right)\)

Bình luận (0)
KM
5 tháng 7 2018 lúc 21:13

Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2}\);\(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{2011^2}+\frac{1}{2012^2}\)

Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2011.2012}=B\)

Ta có \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2011.2012}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\)

\(B=1-\frac{1}{2012}< 1\)

Vì \(B< 1\)mà \(A< B\)nên \(A< 1\)

Khi đó \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\)

Bình luận (0)