NT

Chứng tỏ rằng:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{3}{4}\)

CG
17 tháng 4 2018 lúc 17:46

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}\)

\(\text{Vì}\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2011^2}< \frac{1}{2010.2011}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2011}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2011}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{3}{4}-\frac{1}{2011}< \frac{3}{4}\)

\(\Rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
GN
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết
LT
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
BV
Xem chi tiết
HN
Xem chi tiết