Những câu hỏi liên quan
NN
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
ZZ
Xem chi tiết
GL
7 tháng 4 2019 lúc 18:08

x2+x(y-1)-2y-5=0

\(\Delta=\left(y-1\right)^2+4\left(2y+5\right)=y^2+6y+21\)

Để pt có nghiệm thì \(\Delta\)phải là số chính phương

=> y2+6y+21=k2(k thuộc Z)

=> (y+3)2-k2=-12

=> (y+3+k)(y+3-k)=-12

Đến đây bạn lập bảng rồi giải nhé

Chúc hok tốt!!

Bình luận (0)
H24
7 tháng 4 2019 lúc 18:09

\(x^2+xy-x-2y-5=0\)

\(\Leftrightarrow x^2-2x+x+xy-2y-2-3=0\)

\(\Leftrightarrow x\left(x-2\right)+y\left(x-2\right)+\left(x-2\right)=3\Leftrightarrow\left(x+y+1\right)\left(x-2\right)=3\)

Xét nghiệm nguyên nhé bạn

Bình luận (0)
ZZ
8 tháng 4 2019 lúc 17:02

cám ơn các bạn nhiều

Bình luận (0)
MC
Xem chi tiết
ZZ
1 tháng 5 2020 lúc 23:06

Bạn tham khảo sol ở đây nhé !

IMO ShortList 1998, number theory problem 1

Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )

Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NH
Xem chi tiết
PO
Xem chi tiết
NL
16 tháng 4 2022 lúc 1:09

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)

Bình luận (1)
PH
Xem chi tiết
GL
18 tháng 2 2020 lúc 10:27

\(PT\Leftrightarrow y^2\left(x^2-6\right)-2xy-x^2=0\)

Xét \(\Delta'=x^2+x^2\left(x^2-6\right)\)\(=x^4-5x^{^2}\)

Do x,y nguyên nên \(\Delta'\)là số chính phương

Đặt \(x^4-5x^2=k^2\left(k\in N\right)\)

\(\Leftrightarrow x^2\left(x^2-5\right)=k^2\)

\(\Rightarrow x^2-5\)là số chính phương

Đặt \(x^2-5=a^2\Leftrightarrow\left(x-a\right)\left(x+a\right)=5\)

Xét TH là tìm được nghiệm nhé :P

Bình luận (0)
 Khách vãng lai đã xóa