Những câu hỏi liên quan
NT
Xem chi tiết
DH
Xem chi tiết
BD
13 tháng 4 2017 lúc 20:49

các bạn ơi giúp nhanh nha mình đang cần rất gấp

Bình luận (0)
H24
Xem chi tiết
DD
Xem chi tiết
DL
9 tháng 6 2015 lúc 11:13

\(\frac{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}}{500-\frac{500}{501}-\frac{501}{502}-...-\frac{999}{1000}}=\frac{\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{999}-\frac{1}{1000}\right)}{500-\left(1-\frac{1}{501}\right)-\left(1-\frac{1}{502}\right)-...-\left(1-\frac{1}{1000}\right)}\)

hình như cái mẫu bạn ghi dấu sai thì phải, còn tử thì mình lười làm lắm

tử bạn tính ra 1/2+1/12+...+1/999 000 sau đó phân tích ra là

Bình luận (0)
TT
9 tháng 6 2015 lúc 11:09

khó thật

nhớ L-I-K-E nhe tại vì cậu bảo giúp mình, mình cho đúng liền

Bình luận (0)
NH
Xem chi tiết
H24
11 tháng 7 2019 lúc 20:00

1-1/2+1/3-1/4+......-1/1000 

=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000) 

=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000) 

=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500) 

=1/501 +1/502+1/503+.....+1/1000 ; 

mat khác: 

500-500/501-501/502-.....-999/1000 

=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000  

=>D=1

Bình luận (0)
PL
Xem chi tiết
NP
3 tháng 3 2018 lúc 17:53

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{999}-\frac{1}{1000}\)

\(=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{999}+\frac{1}{1000}-2\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1000}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{999}+\frac{1}{1000}-1-\frac{1}{2}-......-\frac{1}{500}\)

\(=\frac{1}{501}+\frac{1}{502}+.......+\frac{1}{1000}\)

\(\Rightarrowđpcm\)

Bình luận (0)
DH
Xem chi tiết
TL
1 tháng 5 2015 lúc 17:41

b) Vế trái = \(\left(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{500}\right)\)

\(\frac{1}{501}+\frac{1}{502}+...+\frac{1}{1000}\)= Vế phải

=> đpcm

Bình luận (0)
DM
Xem chi tiết
XO
29 tháng 1 2020 lúc 20:53

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)

Vậy B = - 2016

Bình luận (0)
 Khách vãng lai đã xóa
DM
29 tháng 1 2020 lúc 21:26

Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?

Bình luận (0)
 Khách vãng lai đã xóa
JP
Xem chi tiết