Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TA
Xem chi tiết
DY
Xem chi tiết
TT
21 tháng 12 2015 lúc 19:11

Ta có 2 trường hợp : 

* n lẻ : 

Nếu n lẻ thì (n + 7) chẵn

=> (n + 4) . (n + 7) chẵn

* n chẵn 

Nếu n chẵn thì (n + 4) chẵn

=> (n + 4) . (n + 7) chẵn

Tick cho mình nha bạn! (nếu bạn hiểu bài)

Có gì ko hiểu bạn cứ nhắn tin cho mình nhé!

Bình luận (0)
LV
Xem chi tiết
HT
Xem chi tiết
ND
14 tháng 10 2016 lúc 21:16

n là lẻ

=> n+7 là chẵn => (n+7)(n+4) là chẵn

 n là chẵn thì n+4 là chẵn =>(n+4)(n+7) là chẵn

nhớ

Bình luận (0)
ND
14 tháng 10 2016 lúc 22:20

+ Với n =2k  ( n chẵn )  => (n+4)(n+7) = (2k +4)(2k+7) = 2(k+2)(2k+7)  chia hết cho 2

+ n = 2k+1 ( n ; lẻ) => (n+4)(n+7) = (2k +4+1)(2k+1 +7) = (2k +5)(2k+8) = 2(2k+5)(k +4) chia hết cho 2

Vậy (n+4)(n+7) là 1 số chẵn

Bình luận (0)
KA
Xem chi tiết
LQ
11 tháng 7 2023 lúc 16:21

Nếu n không chia hết cho 2 thì n có dạng 2k+1 (kϵN)

⇒ (n+4).(n+7)=(2k+1+4).(2k+1+7)=(2k+5).(2k+8)⋮2 (vì 2k+8⋮2) (1)

Nếu n chia hết cho 2 thì n có dạng 2k (kϵN)

⇒ (n+4).(n+7)=(2k+4).(2k+7)⋮2 (vì 2k+4⋮2) (2)

Từ (1) và (2)⇒ Với mọi số tự nhiên n thì tích (n+4).(n+7)⋮2 (ĐPCM)

 

Bình luận (0)
LA
11 tháng 7 2023 lúc 16:21

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 ( k ϵ N )

Nếu n = 2k

⇒ 2k + 4 = 2( k + 2 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Nếu n = 2k + 1

⇒ 2k + 8 = 2( k + 4 ) ⋮ 2

Suy ra ( n + 4 )( n + 7 ) ⋮ 2 hay ( n + 4 )( n + 7 ) là số chẵn

Vậy với mọi số tự nhiên n thì ( n + 4 )( n + 7 ) là số chẵn

Bình luận (0)
NT
11 tháng 7 2023 lúc 16:42

Để \(\left(n+4\right).\left(n+7\right)\) là số chẵn

\(\Rightarrow\left(n+4\right)\left(n+7\right)\ge2n\) \(\left(n\in N\right)\)

\(\Rightarrow n^2+11n+28-2n\ge0\)

\(\Rightarrow n^2+9n+28\ge0\) 

\(\Rightarrow n^2+9n+\dfrac{81}{4}-\dfrac{81}{4}+28\ge0\)

\(\Rightarrow\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}\ge0\left(1\right)\)

mà \(\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}>0\) \(\left(\left(n-\dfrac{9}{2}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\right)\)

⇒ (1) luôn đúng với mọi n ϵ N

⇒ Điều phải chứng minh

 

Bình luận (0)
TN
Xem chi tiết
H24
12 tháng 2 2015 lúc 12:56

* Nếu n lẻ thì n+7 luôn chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số lẻ thì kết qả là 1 số chẵn )

* Nếu n chẵn thì n+4 là số chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân vs 1 số chẵn ra kết quả là số chẵn )

Bình luận (0)
AC
Xem chi tiết
NQ
24 tháng 7 2015 lúc 8:48

n = 2k => (2k+2)(2k+3) = 2(k+1) . (2k+3) nên chia hết cho 2

n = 2k + 1 = (2k + 1 +2) ( 2k + 1 + 3) = (2k+3) (2k +4) = (2k+3) 2(k+2) nên chia hết cho 2

Vậy vói n là mọi số tự nhiên thì (n+2)(n+3) đều chia hết cho 2

Bình luận (0)
TQ
Xem chi tiết
VQ
10 tháng 11 2015 lúc 19:30

với n = 2k ta có :

(n+2015)(n+2016)=(2k+2015)(2k+2016) là một số chẵn vì 2k+2016 là số chẵn

với n =2k+1

ta có : (2015+n)(2016+n)=(2k+1+2015)(2k+1+2016)=(2k+2016)(2k+2017) là số chẵn vì 2k+2016 là số chẵn 

=>dpcm

Bình luận (0)
BN
Xem chi tiết
LP
7 tháng 11 2019 lúc 19:45

n là số tự nhiên => n = 2k+1 hoặc n = 2k (k thuộc N)

Xét n = 2k+1 => (n+4)(n+7) = (2k+5)(2k+8) = 4k^2 + 10k + 16k + 40 = 4k^2 + 26k + 40 là số chẵn

Xét n = 2k => (n+4)(n+7) = (2k+4)(2k+7) = 4k^2 + 22k + 28 là số chẵn. 

Vậy với mọi số tự nhiên n thì (n+4)(n+7) là một số chẵn :))

Bình luận (0)
 Khách vãng lai đã xóa