cho \(B=1-3+3^2-3^3+...+3^{2014}-3^{2015}\) chứng minh \(B< \frac{1}{4}\)
Cho \(B=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{2014}{5^{2015}}\)
Chứng tỏ rằng : B < \(\frac{1}{16}\)
vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :
1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra
B= >89 _980 - -50 + 678 x 54=143.098-2014/5.2015
vậy B=78
Chua hoc
Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k nhe Nguyen Chau Tuan Kiet
chứng minh rằng
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2015\sqrt{2014}}\) <2
tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha
Bài này trước tiên ta phải đi chứng minh công thức:
\(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Xong áp dụng là ra thui.
Hay thật Công thức rất hay c/m không phức tạp lắm.
nhưng từ bài toán ban đầu tự nhiên nội suy ra được cái công thức đó. Khó nhỉ
1, Chứng minh rằng 1:3 - 2:3^2 + 3:3^3 - 4:3^4 + ...+ 99:3^99 - 100:3^100 < 3:16
2, Cho A= 1x3x5x7x...x2001 . Chứng minh rằng trong các số 2A , 2A+1 , 2A-1 không có số nào là số chính phương
3, Cho a>0 thoả mãn ax ( a+1 ) x ( a+2 ) x ... x ( a+2015 ) = 2015 . Chứng minh rằng a<1: 2014!
4, Tìm 10a+b sao cho ( a^2 + b^2 ) : ( 10a + b ) có giá trị lớn nhất
5, Tìm x,y thuộc Z thoả mãn 4x2 + 4x + y2 = 24
Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16
Cho \(B=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{2014}{5^{2015}}.\)Chứng tỏ rằng B<\(\frac{1}{16}\)
Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2015}-\sqrt{2014}}{4029}
Cho B = 1-3+\(^{3^2}\)-\(3^3\)+...+\(3^{2014}\)-\(3^{2015}\). Chứng minh B<\(\dfrac{1}{4}\)
Có B = 1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\)
3B = 3.(1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\))
3B = 3\(-3^2+3^3-3^4+...+3^{2015}-3^{2016}\)
3B+B = (3\(-3^2+3^3-3^4+...+3^{2015}-3^{2016}\))+(1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\))
4B = 1\(-3^{2016}\) => B = \(\left(1-3^{2016}\right)\div4\) B = \(\dfrac{1}{4}-\dfrac{3^{2016}}{4}\)<\(\dfrac{1}{4}\) (đpcm)
So sánh: \(1+\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+..............+\frac{2014}{2^{2014}}+\frac{2015}{2^{2015}}\) với 3
Chứng minh rằng
\(1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)<4
6. Tính
S= 3+\(\frac{3}{2}\)+ \(\frac{3}{2^2}\)+ ........ + \(\frac{3}{2^9}\)
7. Cho
A= \(\frac{1}{1^2}\)+ \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+... + \(\frac{1}{50^2}\)
Chứng minh A<2
8 SS
A = \(\frac{2015^{2014}+1}{2015^{2014}-1}\)
B=\(\frac{2015^{2014}-1}{2015^{2014}-3}\)
9 So sánh
A=\(\frac{196}{197}+\frac{197}{198}\)
B= \(\frac{196+197}{197+198}\)
Giups mk nha ai nhanh cjo 5 ticks
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}+\frac{1}{1}=2\)
\(\Rightarrow\)\(A< 2\left(đpcm\right)\)
chúc bạn học tốt!!!
Bài 6 :
2S = 6 + 3 + 3/2 + ... + 3/2^8
2S = 6 - 3/2^9 + S
S = 6 - 3/2^9
Vậy S = 6 - 3/2^9
Bài 7 :
Ta có :
A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2
=) A < 2
Vậy A < 2
Bài 8 :
Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )
=) A < B
Vậy A < B
Bài 9:
Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)
=) A > B
Vậy A > B