Những câu hỏi liên quan
Xem chi tiết
H24
21 tháng 12 2018 lúc 9:26

vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :

1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra  

B= >89 _980 -  -50 + 678 x 54=143.098-2014/5.2015

vậy B=78

Bình luận (0)
SL

Chua hoc

Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhe Nguyen Chau Tuan Kiet

Bình luận (0)
DM
Xem chi tiết
TN
18 tháng 12 2016 lúc 23:27

tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha

Bình luận (0)
DM
21 tháng 12 2016 lúc 16:11

Bài này trước tiên ta phải đi chứng minh công thức:

                      \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 Xong áp dụng là ra thui.
 

Bình luận (0)
H24
22 tháng 12 2016 lúc 10:01

Hay thật Công thức rất hay c/m không phức tạp lắm.

nhưng từ bài toán ban đầu tự nhiên nội suy ra được cái công thức đó. Khó nhỉ

Bình luận (0)
HA
Xem chi tiết
LH
25 tháng 5 2015 lúc 11:49

Ta có: 
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100 
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99 
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100 
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99 

=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1... 
<=>16A=3-101/3^99-100/3^100 
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16 
Suy ra A<3/16

Bình luận (0)
NV
13 tháng 2 2016 lúc 15:59

rắc rối quá bạn ạ

Bình luận (0)
H24
14 tháng 3 2017 lúc 12:20

đúng rùi nhưng cô lại chữa rùi

Bình luận (0)
BM
Xem chi tiết
NL
Xem chi tiết
HH
Xem chi tiết
TT
30 tháng 3 2017 lúc 21:32

Có B = 1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\)

3B = 3.(1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\))

3B = 3\(-3^2+3^3-3^4+...+3^{2015}-3^{2016}\)

3B+B = (3\(-3^2+3^3-3^4+...+3^{2015}-3^{2016}\))+(1-3+\(3^2-3^3+...+3^{2014}-3^{2015}\))

4B = 1\(-3^{2016}\) => B = \(\left(1-3^{2016}\right)\div4\) B = \(\dfrac{1}{4}-\dfrac{3^{2016}}{4}\)<\(\dfrac{1}{4}\) (đpcm)

Bình luận (0)
DH
Xem chi tiết
QT
Xem chi tiết
PA
Xem chi tiết
H24
2 tháng 5 2019 lúc 20:30

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

Bình luận (0)
DT
2 tháng 5 2019 lúc 20:45

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B

Bình luận (0)
DT
18 tháng 5 2019 lúc 20:27

Cảm ơn rất nhiều ! Thanks !

Bình luận (0)