tìm số dư cuối cùng của phép chia 2 đa thức sau :
\((1+x^{1998}x^{1999}+x^{2000}+x^{2001}):(1-x^2)\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm dư của phép chia đa thức : A(x) = 1+x^1997 + x^998 + x^1999 + x^2000 cho B(x) = x^2 - 1
tìm đa thức dư cuối cùng của phép chia đa thức: f(x)=1+x^2011+x^2012+x^2013+x^2014 cho đa hức g(x)= 1-x^2
Gọi đa thức dư là ax+b và thương là h(x)
có f(x)=g(x).h(x)+ax+b
thay=1 x=-1 lần lượt ta đc(vì 1-x^2có x=1 x=-1)
a+b=5 và -a+b=1
suy ra a=2 b=3
vậy dư là 2x+3
Cho P(x)là 1 đa thức bậc ba với hệ số của x^3 là 1 số nguyên.
Biết rằng P(1999)=2000 , P(2000)=2001
Chứng minh rằng P(2001) - P(1998) là 1 hợp số
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
Tìm số dư trong phép chia đa thức sau:
\(1+x+x^{13}+x^{2000}+x^{2013}\) chia cho \(1-x^2\)
Bài 1) biết x thuộc z tìm số dư của phép chia
(x+1)(x+3)(x+5)(x+7)+1999 chia cho(x^2+8x+12)
Bài2) đa thức f(x) chia cho x-2 thì dư 5 chia cho x-3 thi dư 7 còn khi chia cho (x-2)(x-3) thì được thương là 1- x^2 và còn dư.Tìm đa thức f(x)
Mn giúp mình với ,,,ít nữa mình phải đi học rồi
Bài 1) biết x thuộc z tìm số dư của phép chia
(x+1)(x+3)(x+5)(x+7)+1999 chia cho(x^2+8x+12)
Bài2) đa thức f(x) chia cho x-2 thì dư 5 chia cho x-3 thi dư 7 còn khi chia cho (x-2)(x-3) thì được thương và còn dư.Tìm đa thức f(x)
Mn giúp mình với ,,,ít nữa mình phải đi học rồi
bó tay dù sao mk cũng muốn bạn tick cho mk nha
Tìm đa thức dư trong phép chia đa thức (x+2)(x+4)(x+6)(x+8)+1999 cho đa thức x^2+10x+21
Cho 2 đa thức p=(x-1)(x+2)(x+4)(x+7)+2075
Và q=x^2 +6x+2. Tìm số dư của phép chia đa thức p cho đa thức q.
\(p=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2075\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2075\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2075\)
\(=\left(x^2+6x+2\right)^2-3\left(x^2+6x+2\right)+2021\)
\(\Rightarrow p\) chia q dư \(2021\)