Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NV
Xem chi tiết
TT
Xem chi tiết
TM
3 tháng 7 2017 lúc 12:34

\(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\Leftrightarrow\frac{3}{y}=\frac{5}{4}-\frac{x}{2}\Leftrightarrow\frac{3}{y}=\frac{5-2x}{4}\Leftrightarrow y\left(5-2x\right)=12\)

x là số nguyên dương nên x>0 => 2x>0 => 5-2x>0 => 5>2x => x<5/2 mà x nguyên dương chẵn => x=2

=>y=12

Bình luận (0)
IY
Xem chi tiết
DC
7 tháng 10 2021 lúc 19:50

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

Bình luận (0)
 Khách vãng lai đã xóa
DK
Xem chi tiết
TM
6 tháng 7 2017 lúc 23:08

Đây nhé: Câu hỏi của Trần Thị Thùy Trang - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
DT
6 tháng 7 2017 lúc 21:24

cặp số nguyên dương là 2 nhá 

bởi vì 2+5=5 và 2+4=4 ,

Bình luận (0)
VA
Xem chi tiết
KM
Xem chi tiết
CN
9 tháng 10 2018 lúc 21:27

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
KS
9 tháng 10 2018 lúc 21:27

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

Bình luận (0)
HH
9 tháng 10 2018 lúc 21:34

Xét x= 1 => \(\dfrac{2}{y-1}\in\mathbb N\), từ đó có \(y=2\vee y=3\)

Xét y=1 => \(\dfrac{x^3+x}{x-1}=x^2+x+2+\dfrac{2}{x-1}\in\mathbb N\), từ đó có \(x=2\vee x=3\)

Xét \(x\ge 2\) hoặc \(y\ge 2\) . Ta có : \((x,xy-1)=1\). Do đó :

\(xy-1|x^3+x\Rightarrow xy-1|x^2+1\Rightarrow xy-1|x+y\)

=> \(x+y\ge xy-1\Rightarrow (x-1)(y-1)\le 2\). Từ đó có \((x-1)(y-1)=1\ \vee (x-1)(y-1)=2\) 

=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2

Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)

Bình luận (0)
MD
Xem chi tiết
CC
Xem chi tiết
2U
31 tháng 12 2019 lúc 15:17

Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)

Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới 

Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)

Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)

Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1) 

Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn

\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)

Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)

suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)

Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
31 tháng 12 2019 lúc 21:30

@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ  ràng là toán 6 sao có lim, phương trình đường tròn;...                      ( lớp 11 , 12 ) ở đây.

 Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.

Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
MU
17 tháng 8 2017 lúc 16:38

ta có: x/2 + 3/y = 5/4

=> 5/4 - x/2 = 3/y

=> 5/4 - 2x/4 = 3/y

=> (5 -2x)/4 = 3/y

=> y(5 - 2x) = 12 

Suy ra:  y; 5-2x thuộc ước của 12 = 1; -1; 2; -2; 3;-3;4;-4;6;-6;12;-12 (1)

Vì x, y là số nguyên dương nên 2x>0 => 5 - 2x>4

Nên từ (1) suy ra 5-2x = 6;12

Ta có bảng:

5-2x6   12 
y21
2x-1-7
xkhông cókhông có

Vậy không có giá trị để x,y thỏa mãn đề bài

Bình luận (0)
00
17 tháng 8 2017 lúc 16:49

Ta có : \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)

\(\Rightarrow\frac{5}{4}-\frac{x}{2}=\frac{3}{y}\)

\(\Rightarrow\frac{5}{4}-\frac{2x}{4}=\frac{3}{y}\)

\(\Rightarrow\frac{5-2x}{4}=\frac{3}{y}\)

\(\Rightarrow y\left(5-2x\right)=12\)

\(\Rightarrow\) y = 5 - 2x \(\in\) Ư(12) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 4 ; -4 ; 6 ; -6 ; 12 ; -12 }

Vì x ; y là số nguyên dương nên 2x > 0 \(\rightarrow\) 5 - 2x > 4

\(\Rightarrow\) 5 - 2x = 6 ; 12 nên ta có bảng sau :

5 - 2x612
y21
2x-1-7
xkhông có không có

Vậy không có x ; y để thỏa mãn đề bài .

Bình luận (0)