Những câu hỏi liên quan
KV
Xem chi tiết
H24
Xem chi tiết
VN
Xem chi tiết
KH
Xem chi tiết
MQ
Xem chi tiết
NT
31 tháng 1 2021 lúc 20:08

Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)

\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)

\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)

hay \(A=\dfrac{-4949}{19800}\)

Bình luận (0)
TP
Xem chi tiết
Ad
17 tháng 11 2018 lúc 8:50

Đặt \(A=\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(2A=\frac{2}{1\times2\times3}+\frac{2}{2\times3\times4}+\frac{2}{3\times4\times5}+...+\frac{2}{30\times31\times32}\)

\(=\left(\frac{1}{1\times2}-\frac{1}{2\times3}\right)+\left(\frac{1}{2\times3}-\frac{1}{3\times4}\right)+\left(\frac{1}{3\times4}-\frac{1}{4\times5}\right)+...+\left(\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\)

\(=\frac{1}{1\times2}-\frac{1}{31\times32}\)

\(=\frac{1}{2}-\frac{1}{992}\)

\(=\frac{495}{992}\)

\(\Rightarrow A=\frac{495}{992}\div2=\frac{495}{1984}\)

Bình luận (0)
H24
17 tháng 11 2018 lúc 8:33

\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+...+\frac{1}{30\times31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+\frac{1}{3\times4}-\frac{1}{4\times5}+...+\frac{1}{30\times31}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{31\times32}\right)\)

\(=\frac{1}{2}\times\frac{990}{1984}\)

\(=\frac{990}{3968}=\frac{495}{1984}\)

Bình luận (0)
TP
17 tháng 11 2018 lúc 8:56

Tham khảo bài mik tại link này nhé :

https://olm.vn/hoi-dap/detail/197648362685.html

Bình luận (0)
TC
Xem chi tiết
NL
5 tháng 8 2015 lúc 17:14

4A=1.2.3.4+2.3.4(5-1)+3.4.5(6-2)+.....+98.99.100(101-97)

4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+....+98.99.100.101-97.98.99.100

4A=98.99.100.101

A=(98.99.100.101):4=24497550

Bình luận (0)
PL
28 tháng 6 2017 lúc 19:51

Cứ một dãy số  thì có 2 thừa số bị gạch nên cuối cùng chỉ còn 1x100

Bình luận (0)
DK
28 tháng 6 2017 lúc 20:47

[ 98.99.100.101 - 0.1.2.3]: 4=24497550

Bình luận (0)
TH
Xem chi tiết
HG
21 tháng 9 2015 lúc 19:48

S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)

S = \(\frac{1}{2}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{2015-2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{2015}{2013.2014.2015}-\frac{2013}{2013.2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2014.2015}\right)\)

S = \(\frac{1}{2}.\frac{2029104}{4058210}\)

S = \(\frac{1014552}{4058210}\)

Bình luận (0)
NH
Xem chi tiết