Tìm GTNN và GTLN biết a ; b và c dương :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Trong bài toán bảo tìm GTLN và GTNN ko xác định thì làm sao để biết đượ dạng nào là GTLN và dạng nào là GTNN ạ
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Các bạn chỉ cho mình từng dấu công nhá
+ Nếu mà 1 bài khong phân bietj rõ ra là tìm GTLN và GTNN thì làm sao để biết được câu nào là GTLN câu ào là giá trị nhỏ nhất ạ !
+ Khi mà tìm ra GTLN và GTNN ví dụ như (x+3/2)^2 + 3 >=3 . Thì khi tìm tại x bằng bao nhiêu thì tại sao chỉ lấy mỗi x+3/2 thôi mà không lấy cả (x+3/2)^2 + 3 = 0 ạ ( Số +3) đó tại sao không được cho vào để tìm khi x bằng bao nhiêu ạ
+1 còn tùy vào từng loại cần tìm nếu đơn giản là đa thức bậc 2 thì sử dụng máy tính hoặc cứ tìm thôi ;-;
+2 Vì \(m^2+3\ge3\) thì để dấu = xảy ra tức là : \(m^2+3=3\) \(\Leftrightarrow m^2=0\)
<=> m = 0 .
Tìm GTLN và GTNN : A = x^2 + y^2 biết x, y thoả mãn x^2 + y^2 - xy = 4 .
Tìm GTLN và GTNN của x biết C = \({2x-3 \over x-4}\)
Nếu chỉ có nguyên phân thức mà không có thêm điều kiện gì thì $C$ không có min, max bạn nhé.
Tìm GTLN của Q=\(-2x^2+6x+8\)
Tìm GTLN và GTNN của: A=\(\dfrac{6x+17}{x^2+2}\)
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Biết tổng 2 số không âm là 82. Tìm GTLN và GTNN của tổng bình phương của chúng.
Gọi 2 số đó là a và b (a\(\ge0,b\ge0\) )
câu a
Áp dụng BĐT Bu-nhia -xkop-ki ,ta có
a+b\(\le\sqrt{\left(a^2+b^2\right)\left(1^2+1^2\right)}\)
\(\Leftrightarrow82\le\sqrt{\left(a^2+b^2\right)2}\) \(\Rightarrow\) \(6724\le\left(a^2+b^2\right)2\Leftrightarrow\left(a^2+b^2\right)\ge3362\)
Vậy Min a2+b2=3362\(\Leftrightarrow a=b=41\)
Cho phân thức A = x2+x+1/x2+2x+1 tìm GTLN
B = x2+x+1/x2+1 tìm GTLN và GTNN