Những câu hỏi liên quan
PV
Xem chi tiết
HN
29 tháng 10 2015 lúc 11:59

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

Bình luận (0)
PV
29 tháng 10 2015 lúc 20:41

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

Bình luận (0)
H24
Xem chi tiết
BL
16 tháng 12 2017 lúc 14:48

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

Bình luận (0)
NT
16 tháng 12 2017 lúc 14:51

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>

Bình luận (0)
DH
20 tháng 12 2017 lúc 20:49

d) Do (a,b) = 5 => a = 5m

                              b = 5n

                ( m,n ) = 1

a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5

=> a = 65                b = 25

Bình luận (0)
MA
Xem chi tiết
DH
Xem chi tiết
TD
9 tháng 3 2022 lúc 20:29

d) Do (a,b) =5 => a = 5m 
                    b = 5n
           (m,n ) = 1
a :b = 2,6 => a/b = 13/5 = 5m/5n => m = 13; n =5 
=> a = 65 b = 25

Bình luận (0)
 Khách vãng lai đã xóa
BQ
Xem chi tiết
NC
5 tháng 4 2018 lúc 20:18
Ta có a.b=(a,b).[a,b] =630.18=11340 Do ƯCLN(a,b)=18 =>a chia hết cho 18 b chia hết cho 18 => a=18m b=18n a.b=18n.18m=324mn=11340 m.n=35
Bình luận (0)
NM
21 tháng 5 2018 lúc 6:35

ta có: a . b = ƯCLN ( a , b ) ; BCNN ( a , b )

theo bài ra ta được:

a . b = 630 . 18

a . b = 11340

vì a . b = 11340 \(\Rightarrow\)a , b \(\in\)Ư ( 11340 ) = { 1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 14; 15; 18; 20; 21; 27; 28; 30; ...; 11340 }

TH1 : a = 1 thì b = 11340

TH2 : a = 2 thì b = 5670

TH3 : a = 3 thì b = 3780

TH4 : a = 4 thì b = 2835

TH5 : a = 5 thì b = 2268

...

TH cuối : a = 11340 thì b = 1

Vậy a = 1, b = 11340

a = 2 , b = 5670

....

a = 11340 , b = 1

Bình luận (0)
PG
21 tháng 5 2018 lúc 6:55

a: 315

b: 6

Bình luận (0)
NC
Xem chi tiết
NN
Xem chi tiết
E3
Xem chi tiết
H24
Xem chi tiết
SG
19 tháng 11 2016 lúc 11:23
Chứng minh P chia hết cho 8

Do ƯCLN(a;b) = 1 và a + b là số chẵn nên a và b cùng lẻ

Giả sử a = 2.m + 1; b = 2.n + 1 (m;n ϵ N)

Ta có: P = a.b.(a - b).(a + b)

= (2.m + 1).(2.n + 1).[(2.m + 1) - (2.n + 1)].[(2.m + 1) + (2.n + 1)]

= (2.m + 1).(2.n + 1).(2.m - 2.n).(2.m + 2.n + 2)

= (2.m + 1).(2.n + 1).2.(m - n).2.(m + n + 1)

= (2.m + 1).(2.n + 1).4.(m - n).(m + n + 1)

+ Nếu m - n chẵn thì P chia hết cho 2.4 = 8

+ Nếu m - n lẻ => m + n lẻ (vì m - n và m + n luôn cùng tính chẵn lẻ)

=> m + n + 1 chẵn => P chia hết cho 2.4 = 8

Như vậy, P luôn chia hết cho 8 (1)

Chứng minh P chia hết cho 3

Vì ƯCLN(a;b)=1 nên a và b không cùng đồng thời là bội của 3

+ Nếu 1 trong 2 số a; b chia hết cho 3 dễ dàng suy ra P chia hết cho 3

+ Nếu a và b cùng dư khi chia cho 3 => a - b chia hết cho 3

=> P chia hết cho 3

+ Nếu a và b khác dư khi chia cho 3 (trừ trường hợp chia 3 dư 0)

Như vậy, trong 2 số a; b có 1 số chia 3 dư 1; 1 số chia 3 dư 2

=> a + b chia hết cho 3 => P chia hết cho 3

Do đó, P luôn chia hết cho 3 (2)

Từ (1) và (2) mà (3;8)=1 => P chia hết cho 24 (đpcm)

 

 

 

Bình luận (1)