Những câu hỏi liên quan
HT
Xem chi tiết
H24
6 tháng 10 2019 lúc 10:49

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)

\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)

\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)

\(\text{Vậy ta có điều phải chứng minh }\)

Bình luận (0)
NH
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
NL
3 tháng 9 2015 lúc 12:12

Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a

=> 1/x + 1/y + 1/z = 1/ ( x + y + z )

<=>( xy + yz + xz )/xyz = 1/ x + y + z

<=>( xy + yz + xz ) ( x + y + z ) = xyz

Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :

( x + y ) ( y + z ) ( z + x ) = 0

=> x = -y => x = a

hoặc y = -z =>x = a

hoặc z = -x => y = a

Nhớ Li - ke nhé !!!

Chúc học tốt !!!

Bình luận (0)
CB
Xem chi tiết
LH
18 tháng 1 2016 lúc 9:11

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

Bình luận (0)
TK
18 tháng 1 2016 lúc 8:28

em mới học lớp 6 nha

sory

Bình luận (0)
BN
18 tháng 1 2016 lúc 8:56

tic cho mình hết âm nhé

Bình luận (0)
HT
Xem chi tiết
KK
Xem chi tiết
PT
13 tháng 9 2016 lúc 13:23

Ta có : (x - 1)(y - 1)(z - 1) = (xy - x - y + 1)(z - 1) = xyz - xz - yz + z - xy + x + y - 1 = (x + y + z) -\(\frac{xy+yz+xz}{1}\)+ 1 - 1

= x + y + z -\(\frac{xy+yz+xz}{xyz}\)= (x + y + z) - (\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)) > 0 (do gt)

Có 2 trường hợp để (x - 1)(y - 1)(z - 1) > 0 :

_ x - 1 ; y - 1 ; z - 1 > 0 => x ; y ; z > 1 => xyz > 1 (trái với gt - loại)

_ 1 trong 3 số x - 1 ; y - 1 ; z - 1 dương,2 số còn lại âm => 1 trong 3 số x,y,z lớn hơn 1 (đpcm)

Bình luận (0)
ND
Xem chi tiết
MN
Xem chi tiết
HN
23 tháng 11 2016 lúc 17:01

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x+y=0\) hoặc \(y+z=0\) hoặc \(z+x=0\)

=> ...............................................

Bình luận (0)
LN
23 tháng 11 2016 lúc 15:16

ko khó đâu

Bình luận (0)