\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+zx^2+xy^2+y^2z+xyz+xyz+yz^2+z^2x-xyz=0\)
\(\Leftrightarrow x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)