cho x,y,z>0 thoa man dieu kien (x+y)(y+z)(z+x)=8xyz
CM: x=y=z
tim cac so tu nhien x y z khac 0 thoa man dieu kien x+y+z = xyz
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
tích nha
mk giải đc bài này ở dạng lớp 7..nè
Cho x,y,z la cac so duong thoa man dieu kien x+y+z > hoac = 12
GTNN: P =\(\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{z}}+\dfrac{z}{\sqrt{x}}\)
cho x,y,z thoa man dieu kien :x+y+z+xy+yz+zx=6 tinh gia tri nho nhat cuax^2+y^2+z^2
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)
Tương tự cũng có 2 BĐT tương tự:
\(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(y-z\right)^2\ge0\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế 2 BĐT (1) và (2) có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\)
Xảy ra khi \(x=y=z=1\)
Lớp 9 gì mà hs lớp 7 làm đc :)) ahaha
Áp dụng bất đẳng thức Cauchy ta có :
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2zx\)
Cộng vế với vế ta được :
\(3x^2+3y^2+3z^2+3\ge x+y+z+xy+xz+yz\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge6\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{6-3}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy \(x^2+y^2+z^2\) có GTNN là 1 tại \(x=y=z=1\)
Nhầm \(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\ge\frac{2.6-3}{3}=3\)
tim cac so nguyen x,y,z thoa man dieu kien sau
x^2=y-1
y^2=z-1
z^2=x-1
Cho ba so x,y,z khac 0 thoa man dieu kien \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\).Khi do B=\(\left(1+\frac{x}{y}\right)+\left(1+\frac{y}{z}\right)+\left(1+\frac{z}{x}\right)\)Co gia tri bang
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+x}=2\)
ta có:\(B=\left(1+\frac{x}{y}\right)+\left(1+\frac{y}{z}\right)+\left(1+\frac{z}{x}\right)=3+\frac{x+y+z}{y+z+x}=3+1=4\)
B có giá trị bằng 4
cho x;y;z;t la 4 so khac 0 va thoa man cac dieu kien sau:
y^2=xz, z^2=yt, vay^3+z^3+t^3kac 0chung minh rang:
(y^3+z^3+x^3)/y^3+z^3+t^3=x/t
cho cac so x,y,z va x+y+z khac 0 thoa man dieu kien
\(\frac{x+2y}{x+2y-z}+\frac{y+2z}{y+2z-x}+\frac{z+2x}{z+2x-+y}\)
tinh gt bieu thuc \(T=\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{z^2+x^2}{zx}\)
Cho x,y, z la cac so duong thoa man dieu kien x+y+z=a
tim GTNN : Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\
=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)
=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)
ÁP dụng BĐT cô si
\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)
\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)
\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)
=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
=> MinQ=64 khi x=y=z=a/3
\(x.x+y.y+z.z=12\)
\(\Leftrightarrow\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}=\frac{12}{3}=4\)
\(\Rightarrow x^2=1.4=4\Leftrightarrow x=2\)
\(y^2=1.4=4\Leftrightarrow y=2\)
\(z^2=1.4=4\Leftrightarrow z=2\)
Áp dụng BĐT Cauchy - schwarz:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{36}{3}=12\)
(Dấu "="\(\Leftrightarrow x=y=z\))
\(pt\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=2\\x=y=z=-2\left(L\right)\end{cases}}\)(Vì x + y + z = 6)
Vậy x = y = z = 2