Tính tổng:
a. x2 + 5x2 + (-3x2)
b. 5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2
c. 3x2y2z2 + x2y2z2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tổng: 5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2
5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2 = (5 + 1/2 + 1/4 - 1/2 )xy2 = 21/4 xy2
1. Làm tính nhân:
a. 3x(5x2 - 2x - 1)
b. (x2+2xy -3)(-xy)
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1)
Làm tính nhân:
a. 3 x(5x2 - 2x -1) = 15x3 - 6x2 - 3x
b. (x2+2xy -3)(-xy) = - x3y – 2x2y2 + 3xy
c. 1/2 x2y ( 2x3 - 2/5 xy2 -1 )= x5y - 1/5 x3y3 - 1/2 x2y
a, thu gọn đơn thức:1/9 xy.(-3x2 y)3
b, thu gọn rồi tính giá trị đa thức:A=1/3x2 y-xy2+2/3x2 y=1/2 xy+xy2+1 tại x=1,y=-1
a: \(=\dfrac{1}{9}xy\cdot\left(-27\right)x^6y^3=-3x^7y^4\)
b: \(A=\dfrac{1}{3}x^2y-xy^2+\dfrac{2}{3}x^2y+\dfrac{1}{2}xy+xy^2+1\)
=x^2y+1/2xy+1
Khi x=1 và y=-1 thì A=-1-1/2+1=-1/2
Bài 1. Làm tính nhân a) x(x2 – xy2) b) ( 2x – 3)( x + 3)d) (2x2 -3x)(5x2 -2x + 1)e)
a: \(=x^3-x^2y^2\)
b: \(=2x^2+6x-3x-9\)
\(=2x^2+3x-9\)
Bài 1. Làm tính nhân:
a) 3x2 (2 - 5xy)
b) -\(\dfrac{2}{3}\) xy (xy2 - x3 + 4)
c) ( x - 7 y )( xy + 1)
Bài 2. Rút gọn các biểu thức sau:
a) 5x(4x2 - 2x +1) - 2x(10x2 - 5x - 2)
b) 3x( x - 2) - 5x(1- x) - 8(x2 - 3)
d) (x3 - 2x)(x2 +1)
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
câu d của bài 2 là của bài 1 nha mình để nhầm chỗ huhu
Bài 1. Làm tính nhân:
a) 3x(5x2 - 2x - 1);
b) (x2 - 2xy + 3)(-xy);
c) x2y(2x3 - xy2 - 1);
d) x(1,4x - 3,5y);
e) xy(x2 - xy + y2);
f)(1 + 2x - x2)5x;
g) (x2y - xy + xy2 + y3). 3xy2;
h) x2y(15x - 0,9y + 6);
a) \(3x\left(5x^2-2x-1\right)\)
\(=3x.5x^2-3x.2x+3x.\left(-1\right)\)
\(=15x^3-6x^2-3x\)
b) \(\left(x^3-2xy+3\right)\left(-xy\right)\)
\(=\left(-xy\right).\left(x^2+2xy-3\right)\)
\(=\left(-xy\right).x^2+\left(-xy\right).2xy+\left(-xy\right).\left(-3\right)\)
\(=x^3y-2x^2y^2+3xy\)
mấy câu sau vt lại đè
Cho hai đa thức A = x 2 y - x y 2 + 3 x 2 , B = x 2 y + x y 2 - 2 x 2 - 1 . Tính đa thức A + 2B.
A. 2 x 2 y + x y 2 - x 2 - 2
B. 3 x 2 y - x 2 - 2
C. 3 x 2 y + x y 2 - x 2 - 2
D. 2 x 2 y + x y 2 - x 2 - 2
Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)
= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2
= 3x2y + xy2 - x2 - 2. Chọn C
Phân tích đa thức thành nhân tử:
a) 50x5-8x3
b) x4-5x2-4y2+10y
c) 36a2-b2+12a+1
d) x3+y3-xy2-x2y
e) 4x2+4x-3
f) 9x4+16x2-4
g) -6x2+5xy+4y2
h)(x2+4x)2+8(x2+4x)+15
i) 9x4+5x2+1
a: \(50x^5-8x^3\)
\(=2x^3\left(25x^2-4\right)\)
\(=2x^3\left(5x-2\right)\left(5x+2\right)\)
b: \(x^4-5x^2-4y^2+10y\)
\(=\left(x^2-2y\right)\left(x^2+2y\right)-5\left(x^2-2y\right)\)
\(=\left(x^2-2y\right)\left(x^2+2y-5\right)\)
c: \(36a^2+12a+1-b^2\)
\(=\left(6a+1\right)^2-b^2\)
\(=\left(6a+1-b\right)\left(6a+1+b\right)\)
d: \(x^3+y^3-xy^2-x^2y\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)^2\)
e: Ta có: \(4x^2+4x-3\)
\(=4x^2+6x-2x-3\)
\(=2x\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(2x-1\right)\)
f: Ta có: \(9x^4+16x^2-4\)
\(=9x^4+18x^2-2x^2-4\)
\(=9x^2\left(x^2+2\right)-2\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(9x^2-2\right)\)
g: Ta có: \(-6x^2+5xy+4y^2\)
\(=-6x^2+8xy-3xy+4y^2\)
\(=-2x\left(3x-4y\right)-y\left(3x-4y\right)\)
\(=\left(3x-4y\right)\left(-2x-y\right)\)
h: Ta có: \(\left(x^2+4x\right)^2+8\left(x^2+4x\right)+15\)
\(=\left(x^2+4x\right)^2+3\left(x^2+4x\right)+5\left(x^2+4x\right)+15\)
\(=\left(x^2+4x+3\right)\cdot\left(x^2+4x+5\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x^2+4x+5\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a) a/ x2 – 2x
b) 2bx – 3ay – 6by + ax
c) x3 +2x2y + xy2 – 4x
d) 4 - x2 – 2xy – y2
đ) 5x2 + 3(x + y)2 – 5y2
e/ 6x2y – 9x
b/ 4x3 – 4x2y + xy2 – 16 x
f) x2 + (2x +y)y – z2
\(a,=x\left(x-2\right)\\ b,=2b\left(x-3y\right)+a\left(x-3y\right)=\left(a+2b\right)\left(x-3y\right)\\ c,=x\left(x^2+2xy+y^2-4\right)=x\left[\left(x+y\right)^2-4\right]=x\left(x+y+2\right)\left(x+y-2\right)\\ d,=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\\ đ,=5\left(x-y\right)\left(x+y\right)+3\left(x+y\right)^2=\left(x+y\right)\left(5x-5y+3x+3y\right)\\ =\left(x+y\right)\left(8x-2y\right)=2\left(4x-y\right)\left(x+y\right)\\ e,=3x\left(2xy-3\right)\\ b,=x\left(4x^2-4xy+y^2-4\right)=x\left[\left(2x-y\right)^2-4\right]=x\left(2x-y-2\right)\left(2x-y+2\right)\\ f,=\left(x+y\right)^2-z^2=\left(x+y-z\right)\left(x+y+z\right)\)
a,=x(x−2)b,=2b(x−3y)+a(x−3y)=(a+2b)(x−3y)c,=x(x2+2xy+y2−4)=x[(x+y)2−4]=x(x+y+2)(x+y−2)d,=4−(x+y)2=(2−x−y)(2+x+y)đ,=5(x−y)(x+y)+3(x+y)2=(x+y)(5x−5y+3x+3y)=(x+y)(8x−2y)=2(4x−y)(x+y)e,=3x(2xy−3)b,=x(4x2−4xy+y2−4)=x[(2x−y)2−4]=x(2x−y−2)(2x−y+2)f,=(x+y)2−z2=(x+y−z)(x+y+z)