Những câu hỏi liên quan
NL
Xem chi tiết
NP
31 tháng 3 2018 lúc 16:30

\(\hept{\begin{cases}\frac{x^2+1}{y}=\frac{y^2+1}{y}\left(1\right)\\x^2+3y^2=4\left(2\right)\end{cases}}\)

ĐK \(x,y\ne0\)

   Từ     \(\frac{y^2+1}{y}=\frac{x^2+1}{x}\Leftrightarrow xy^2+x=x^2y+y\Leftrightarrow\left(xy-1\right)\left(x-y\right)=0\)

           \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=1\end{cases}}\)

+ thay  \(x=y\)vào (2) ta dc ..................

+xy=1 suy ra 1=1/y thay vao 2 ta dc............

Bình luận (0)
NH
Xem chi tiết
NL
9 tháng 7 2021 lúc 17:09

Dùng cái đầu đi ạ

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NL
Xem chi tiết
KJ
Xem chi tiết
HM
Xem chi tiết
ND
28 tháng 6 2021 lúc 12:29

\(\hept{\begin{cases}2x+\left(3-2xy\right)y^2=3\left(1\right)\\2x^2-x^3y=2x^2y^2-7xy+6\left(2\right)\end{cases}}\)

Biến đổi (2), ta được: \(\left(xy-2\right)\left(2xy-3+x^2\right)=0\)

TH1: \(\hept{\begin{cases}xy-2=0\\2x+\left(3-2xy\right)y^2=3\Leftrightarrow\end{cases}\hept{\begin{cases}xy=2\\2x-y^2-3=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\frac{\left(y^2+3\right)y}{2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\y^3+3y-4=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\left(y-1\right)\left(y^2+y+4\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

TH2: \(\hept{\begin{cases}2xy-3+x^2=0\\2x+\left(3-2xy\right)y^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}3-2xy=x^2\\2x+x^2y^2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\2x+\frac{\left(3-x^2\right)^2}{4}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{3-x^2}{2}\\x^4-6x^2+8x-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\\left(x-1\right)^3\left(x+3\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\left(h\right)\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy \(S=\left\{\left(2;1\right);\left(1;1\right);\left(-3;1\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
NT
8 tháng 6 2022 lúc 20:01

a: \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=7\\2x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=-3\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=-2\\2x-8y=20\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}11y=-22\\x-4y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=10+4y=10-8=2\end{matrix}\right.\)

c: \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=-4\\5x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3x+2=-15+2=-13\end{matrix}\right.\)

d: \(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=7\\2x-4y=-14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=21\\x=-7+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-1\end{matrix}\right.\)

Bình luận (0)
HT
Xem chi tiết
HT
Xem chi tiết