Những câu hỏi liên quan
TA
Xem chi tiết
QN
Xem chi tiết
H24
17 tháng 3 2022 lúc 20:17

tham khảo

+ Vì MAM là đường trung tuyến của ΔABC(gt)ΔABC(gt)

=> MM là trung điểm của BC.BC.

=> BM=CM=12BCBM=CM=12BC (tính chất trung điểm).

=> BM=CM=12.16=162=8(cm).BM=CM=12.16=162=8(cm).

+ Xét ΔABCΔABC có:

AB=AC=17cm(gt)AB=AC=17cm(gt)

=> ΔABCΔABC cân tại A.A.

Có AMAM là đường trung tuyến (gt).

=> AMAM đồng thời là đường cao của ΔABC.ΔABC.

=> AM⊥BC.AM⊥BC.

+ Xét ΔABMΔABM vuông tại M(cmt)M(cmt) có:

AM2+BM2=AB2AM2+BM2=AB2 (định lí Py - ta - go).

=> AM2+82=172AM2+82=172

=> AM2=172−82AM2=172−82

=> AM2=289−64AM2=289−64

=> AM2=225AM2=225

=> AM=15(cm)AM=15(cm) (vì AM>0AM>0).

+ Vì G là trọng tâm của ΔABC(gt).ΔABC(gt).

=> AG=23AMAG=23AM (tính chất trọng tâm của tam giác).

=> AG=23.15AG=23.15

=> AG=303AG=303

=> AG=10(cm).AG=10(cm).

Vậy AM=15(cm);AG=10(cm).

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 3 2022 lúc 13:39

a, Xét tam giác ABC cân tại A có AM là trung tuyến 

=> AM đồng thời là đường cao => AM vuông BC 

b, Ta có BM = BC/2 = 3/2 cm 

Theo định lí Pytago tam giác AMB vuông tại M

\(AM=\sqrt{AB^2-BM^2}=\dfrac{\sqrt{91}}{2}cm\)

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 4 2019 lúc 19:25

help me > _ <

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 10 2018 lúc 9:04

Do M là trung điểm của BC nên BM = CM = BC/2 cm

Tam giác AMB có ∠(AMB) = 90o

Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:

AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162

= 1156 - 256 = 900

Suy ra: AM = 30 (cm).

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 11 2019 lúc 5:34

Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC

Khi đó ta có AM2 = AB2 - BM2 = 102 - 82 = 36 ⇒ AM = 6cm. Chọn A

Bình luận (0)
PH
Xem chi tiết
NT
13 tháng 5 2022 lúc 21:30

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

Bình luận (1)
H24
13 tháng 5 2022 lúc 21:32

tham khảo

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

Bình luận (0)
H24
13 tháng 5 2022 lúc 21:37

a, Ta có :

AB = AC (gt)

=> Δ ABC cân tại A

Xét Δ ABM và Δ ACM, có :

AB = AC (gt)

MB = MC (M là trung điểm BC)

\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)

=> Δ ABM = Δ ACM

b, Ta có :

AM là đường trung tuyến

Δ ABC cân tại A

=> AM ⊥ BC

c, Ta có :

BC = 2MB

=> 16 = 2MB

=> MB = 8 (cm)

Xét Δ AMB vuông tại M, có :

\(AB^2=AM^2+BM^2\)

=> \(10^2=AM^2+8^2\)

=> \(AM^2=36\)

=> AM = 6 (cm)

Bình luận (0)
LT
Xem chi tiết
TT
Xem chi tiết
H24
22 tháng 3 2022 lúc 4:29

 undefined

undefined

Bình luận (0)