Những câu hỏi liên quan
NH
Xem chi tiết
HL
29 tháng 3 2018 lúc 20:33

S=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\)

\(S=\dfrac{1}{1}-\dfrac{1}{5}\\ S=\dfrac{4}{5}\)

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}\\ 2.P=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\)

\(2.P=\dfrac{1}{1}-\dfrac{1}{9}\\ 2.P=\dfrac{8}{9}\\ P=\dfrac{8}{9}:2\\ P=\dfrac{8}{18}=\dfrac{4}{9}\)

Bình luận (0)
KN
Xem chi tiết
HQ
4 tháng 2 2017 lúc 10:39

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=2.\left(1-\frac{1}{99}\right)\)

\(=2.\frac{98}{99}\)

\(=\frac{196}{99}=1\frac{97}{99}\)

Bình luận (1)
BT
4 tháng 2 2017 lúc 10:41

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Bình luận (3)
DB
4 tháng 5 2019 lúc 13:18

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

=>\(\frac{1}{1}-\frac{1}{100}\)

=>\(\frac{99}{100}\)

B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

=>\(\frac{1}{1}-\frac{1}{99}\)

=>\(\frac{98}{99}\)

Bình luận (0)
TN
Xem chi tiết
ND
16 tháng 6 2015 lúc 7:39

A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +.....+ 1/99- 1/100

A= 1 - 1/100

A= 99/100

Bình luận (0)
DL
16 tháng 6 2015 lúc 7:45

AXXXXXXXXXXXXXXXXXXXXXXX

ghi xong hết rồi

mạng nó rớt, ấn gửi trả lời mà không biết

tong teo

Bình luận (0)
CS
16 tháng 6 2015 lúc 8:00

a)A = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/99.100

A = 1 -1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

Rút gọn ta được :

A= 1 - 1/100

A= 99/100

b) B = 1/1.3+1/3.5+1/5.7+....+1/ 99 .101

   B x 2 ta có : 1- 1/3 + 1/3 - 1/5+ 1/5-1/7+...+1/99-1/101

   B x2 rút gọn ta được: 1 - 1/ 101 

                         B x 2=  100 / 101

                        B =  100/ 101 : 2 = 50 / 101

  

Bình luận (0)
TL
Xem chi tiết
LP
24 tháng 6 2015 lúc 10:59

a) 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2003.2004 = 1/1 - 1/2 +1/2 - 1/3 +...+ 1/2003 -1/2004 = 1 - 1/2004

b) Đặt B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005 => 2B = 2(1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005) => 2B = 2/3.5 + 2/5.7 + 2/7.9 +...+ 2/2003.2005 => 2B = 1/3 - 1/5 + 1/5 - 1/7 +1/7 - 1/9 +...+ 1/2003 - 1/2005 => 2B = 1/3 - 1/2005 = 2012/6015 => B = 2012/6015 : 2 = 1001/6015

( Cái này là để bạn hiểu thêm cách mình làm ở trên : C/m : a/k.(k+a) = a/k - a/k+a

Ta có : a/k.(k+a) = (k+a) - k/k.(k+a) = k+a/k.(k+a) - k/k.(k+a) = a/k - a/k+a)

Bấm đúng cho mình nhe

Bình luận (0)
DH
21 tháng 2 2018 lúc 19:11

sai rồi

Bình luận (0)
NT
12 tháng 4 2020 lúc 19:48

mày bảo người ta làm sai thế mày làm đi . ooooooooooookkkkkkkkkkkk

chứ

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
DT
27 tháng 2 2018 lúc 20:43

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2017\cdot2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b) \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{97\cdot99}\)( sửa 91.99 thành 97.99 mới đúng nha )

\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{97}-\frac{2}{99}\right)\)

\(=\frac{1}{2}\left(\frac{2}{3}-\frac{2}{99}\right)\)

\(=\frac{1}{2}.\frac{64}{99}\)

\(=\frac{32}{99}\)

Bình luận (0)
AF
27 tháng 2 2018 lúc 20:44

a) 1/1.2 + 1/2.3 + 1/3.4 +...+1/2017.2018

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ....+1/2017 - 1/2018

= 1 - 1/2018 

= 2017/2018

Bình luận (0)
LA
Xem chi tiết
KT
29 tháng 7 2018 lúc 15:33

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{!}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

\(C=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+....+\frac{1}{1024}+\frac{1}{2048}\)

\(\Rightarrow\)\(2C=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}+\frac{1}{1024}\)

\(\Rightarrow\)\(2C-C=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)

\(\Leftrightarrow\)\(C=1-\frac{1}{2048}=\frac{2047}{2048}\)

Bình luận (0)
LA
29 tháng 7 2018 lúc 15:45

Câu A bạn quên 1/4.5 kìa , với câu D đâu >>>
 

Bình luận (0)
H24
26 tháng 10 2024 lúc 20:08

Lam mô a Di Đà Phật 

 

Bình luận (0)
SK
Xem chi tiết
LN
26 tháng 4 2017 lúc 16:18

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=1\(-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(\dfrac{47}{60}\)

B=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)=

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}+\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\)

Bình luận (0)
HN
25 tháng 4 2017 lúc 23:52

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

= \(\dfrac{47}{60}\)

B= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= 2\(\left(1-\dfrac{1}{101}\right)\)

= \(\dfrac{200}{101}\)

Bình luận (1)
DA
Xem chi tiết
PM
Xem chi tiết
NH
17 tháng 9 2017 lúc 9:33

Cách làm :

Áp dụng công thức : \(\dfrac{n}{a\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\)

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=1-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+.........+\dfrac{1}{99.101}\)

\(\Leftrightarrow2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{99.101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{99}-\dfrac{1}{101}\)

\(\Leftrightarrow2F=1-\dfrac{1}{101}\)

\(\Leftrightarrow2F=\dfrac{100}{101}\)

\(\Leftrightarrow F=\dfrac{50}{101}\)

Bình luận (0)
H24
17 tháng 9 2017 lúc 9:34

Giải:

\(C=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{1}{1}-\dfrac{1}{1000}\)

\(\Leftrightarrow C=\dfrac{999}{1000}\)

Sửa đề:

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{999.1001}\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{999}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{1001}\right)\)

\(\Leftrightarrow F=\dfrac{1}{2}.\dfrac{1000}{1001}\)

\(\Leftrightarrow F=\dfrac{500}{1001}\)

Chúc bạn học tốt!

Bình luận (0)
NN
17 tháng 9 2017 lúc 9:39

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{999}-\dfrac{1}{1000}\)(Áp dụng t.c\(\dfrac{1}{a\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\))

=\(\dfrac{1}{1}-\dfrac{1}{1000}=\dfrac{999}{1000}\)

Vậy...

\(F=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{997.999}\)

=>\(2F=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{997.999}\)

=>\(2F=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{997}-\dfrac{1}{999}\)(áp dụng tính chất \(\dfrac{2}{a\left(a+2\right)}=\dfrac{1}{a}-\dfrac{1}{a+2}\))

=>\(2F=\dfrac{1}{1}-\dfrac{1}{999}=\dfrac{998}{999}\)

=>\(F=\dfrac{499}{999}\)

Vậy...

Bình luận (0)