Những câu hỏi liên quan
T2
Xem chi tiết
LM
2 tháng 1 2018 lúc 22:12

Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b+c-a\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b\right)-b\left(c-a\right)+c\left(c-a\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(c-a\right)\left(c-b\right)=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\\left(c-a\right)\left(c-b\right)=0\end{cases}}\)

\(\Leftrightarrow\)\(a=b=c\)

Thế a = b = c vào A ta được:

\(A=3^3-3a^3+3a^2-3a+5\)

\(A=3\left(a^2-a+\frac{5}{3}\right)\)

\(A=3\left[\left(a-\frac{1}{2}\right)^2+\frac{17}{12}\right]\)

\(A=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

Vậy GTNN của A là 17/4 khi a = b = c = 1/2

Bình luận (0)
NC
21 tháng 3 2019 lúc 23:17

Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

<=> \(a^2+b^2+c^2-ac-bc-ab=0\Leftrightarrow2a^2+2b^2+2c^2-2ac-2bc-2ab=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

<=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

<=> \(\left(a-b\right)^2=0,\left(b-c\right)^2=0,\left(a-c\right)^2=0\)

<=> a=b=c

Thế vào ta có biểu thức:

A=\(3a^3-3a^3+3a^2-3a+5=3\left(a^2-a+\frac{5}{3}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

Giá trị nhỏ nhất của biểu thức A=17/4 

Dấu bằng xảy ra khi a=b=c=1/2

Bình luận (0)
H24
Xem chi tiết
DH
12 tháng 5 2018 lúc 19:31

\(a^2+b^2>=2ab;b^2+c^2>=2bc;a^2+c^2>=2ac\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2>=ab+bc+ac\)

dấu= xảy ra khi a=b=c
\(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=a^2-ab+b^2-bc+c^2-ca=0\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow a=b=c\)(chứng minh trện)

\(H=a^3+b^3+c^3-3abc+3ab-3c+5=a^3+a^3+a^3-3aaa+3aa-3a+5\)

\(=3a^3-3a^3+3a^2-3a+5=3a^2-3a+5=3\left(a^2-a+\frac{1}{4}\right)+\frac{17}{4}\)

\(=3\left(a^2-2\cdot\frac{1}{2}a+\left(\frac{1}{2}\right)^2\right)+\frac{17}{4}=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}>=\frac{17}{4}\)

dấu = xảy ra khi \(3\left(a-\frac{1}{2}\right)^2=0\Rightarrow a-\frac{1}{2}=0\Rightarrow a=\frac{1}{2}\)

vậy min H là \(\frac{17}{4}\)khi \(a=\frac{1}{2}\)

Bình luận (0)
VH
Xem chi tiết
NC
21 tháng 3 2019 lúc 23:05

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

EM tham khảo nhé!

Bình luận (0)
VH
21 tháng 3 2019 lúc 23:12

Thank you chụy

Bình luận (0)
NC
21 tháng 3 2019 lúc 23:21

Tham khảo bài cô làm nhé! Bài của bạn làm một số chỗ chưa đúng!

Bình luận (0)
VT
Xem chi tiết
MP
18 tháng 4 2016 lúc 23:19

$\frac{17}{4}$174  tại a=b=c=$\frac{1}{2}$

Bình luận (0)
MP
18 tháng 4 2016 lúc 23:20

=1/2 NHÉ

Bình luận (0)
NC
21 tháng 3 2019 lúc 23:06

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

Bình luận (0)
LT
Xem chi tiết
MP
Xem chi tiết
MP
18 tháng 4 2016 lúc 23:17

a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c

Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)

Bình luận (0)
PA
18 tháng 4 2016 lúc 23:27

Từ giả thiết => a = 0 hoặc a = b

* TH1: a = 0

 b(b-c)+c(c-a)=0  <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)

Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0

Vậy a = b = c = 0 => A = 5

* TH2: a = b

 b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c

Vậy a =b=c => A = a3 + a+a3 - 3a3 + 3a2 - 3a + 5

                          = 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4

Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4  

17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2

Bình luận (0)
DN
Xem chi tiết
PH
31 tháng 10 2016 lúc 20:45

sao hk thấy x, y, z đâu hết

 

Bình luận (2)
EC
Xem chi tiết
HQ
27 tháng 3 2018 lúc 21:20

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

Bình luận (1)
TD
27 tháng 3 2018 lúc 21:24

a+b+c=0

\(\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó

Bình luận (0)
AH
28 tháng 3 2018 lúc 14:34

Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.

Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)

Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:

\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)

Do đó:

\(a^3+b^3+c^3=3abc\)

Bình luận (0)
DN
Xem chi tiết
HP
21 tháng 9 2016 lúc 10:39

quá đơn giản

ở trên  a(a-b)+b(b-c)+c(c-a)+0 suy ra a=b=c

thay vào k=a^3x3-3a^3=3a^2 -3a+5=3a^2+-3a+5

min của k là min của 3a^2-3a+5 là bằng 17/4

Bình luận (0)