So sánh:
a) A=32008-32007+32006-32005+...+32-3+1 với \(\frac{1}{4}\)
Cho A = 1 + 3 + 32 + …+ 32006
a) Tính 3A
b) Chứng minh A = (32007 – 1):2
a: \(3A=3^2+3^3+3^4+...+3^{2007}\)
1. Tính ( bằng 2 cách ) :
a ) S= 1+2+3+...+2018
b ) S = 1+3+5+.....+2019
2. Tính ( bằng 2 cách )
a ) S= 2+22 + 23 + 24 + ....+ 22018
b ) S = 1+4+7+10+.....+2020
c) B= 1+6+11+16+....+2021
d ) A = 3+32 + 33 +....+32005
e) E = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
Cho tổng A=1+32+34+36+...+32008. Tính giá trị biểu thức: B= 8A-32010
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
Theo đề bài ra, ta có :
A=1+3^2+3^4+3^6+....+3^2008
9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010
9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)
8A = -1+3^2010
8A - 3^2010 = (-1)
@Nae
so sánh
1, căn 70+2 và căn 70 + căn 2
2, 1+2/(1.2)^2 + 2+3/(2.3)^2 + 3+4/(3.4)^2 + ... 32007+2008/(2007.2008)^2 VÀ 1 - 1/2007.2009
các bác HỘ em với
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
a) Ta có:
\( - \frac{1}{3} = \frac{{ - 5}}{{15}};\frac{{ - 2}}{5} = \frac{{ - 6}}{{15}}\)
Vì -5 > -6 nên \(\frac{{ - 5}}{{15}} > \frac{{ - 6}}{{15}}\) hay \( - \frac{1}{3}\) > \(\frac{{ - 2}}{5}\)
b) 0,125 < 0,13 vì chữ số hàng phần trăm của 0,125 là 2 nhỏ hơn chữ số hàng phần trăm của 0,13 là 3
c) Ta có:
\(\begin{array}{l} - 0,6 = \frac{{ - 6}}{{10}} = \frac{{ - 3}}{5} = \frac{{ - 9}}{{15}};\\\frac{{ - 2}}{3} = \frac{{ - 10}}{{15}}\end{array}\)
Vì -9 > -10 nên \(\frac{{ - 9}}{{15}} > \frac{{ - 10}}{{15}}\) hay - 0,6 > \(\frac{{ - 2}}{3}\)
Không sử dụng máy tính cầm tay, hãy so sánh:
a) \({5^{6\sqrt 3 }}\) và \({5^{3\sqrt 6 }};\)
b) \({\left( {\frac{1}{2}} \right)^{ - \frac{4}{3}}}\) và \(\sqrt 2 {.2^{\frac{2}{3}}}.\)
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
So sánh:
a) \({( - 2)^4} \cdot {( - 2)^5}\) và \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) và \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2}\) và \({\left[ {{{(0,3)}^2}} \right]^3}\);
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) và \({\left( {\frac{3}{2}} \right)^2}\).
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
(-2) ^4 . (-2) 65 và ( -2) ^ 12 : ( -2) ^3
=( -2) ^ 4+5 =(-2)^9 và (-2) ^12-3 = ( -2) ^9
vậy ( -2) ^9 = (-2) ^9
Nên (-2) ^4 .( -2) ^5 = ( -2) ^ 12 : ( -2) ^3
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1
bai 1:tính nhanh : P=\(\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}\)
Bai 2:Thực hiện phép tính: 1-2+3-4+5-6+...+2011-2012
Bai 3:so sánh:A=\(\frac{2011+2012}{2012+2013}\)
B=\(\frac{2011}{2012}+\frac{2012}{2013}\)
bai4:so sánh:A=\(\frac{20^{10}+1}{20^{10}-1}\)
B=\(\frac{20^{10}-1}{20^{10}-3}\)
Bài 2:1-2+3-4+...+2011-2012
=1+2+3+4+...+2011+2012-2(2+4+6+...+2012)
=2025078-2(1012036)
=2025078-2024072
=1006
Học giỏi!
So sánh:A=\(\frac{2009^{2008}+1}{2009^{2009}+1}\)với B=\(\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vì B là phân số bé hơn 1 nên cộng cùng một số vào tử và mẫu của phân số đó thì giá trị của B sẽ tăng thêm, ta có:
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}=A\)
Vậy B < A