Những câu hỏi liên quan
ND
Xem chi tiết
TL
26 tháng 9 2015 lúc 15:21

+) Chứng minh 6a - b chia hết cho 13

ta có (8a + 3b) + 3.(6a - b) = 8a + 3b + 18a - 3b  = 26a 

Vì 26a; 8a + 3b chia hết cho 13 nên 3.(6a - b) chia hết cho 13 . mà 3 không chia hết cho 13 nên 6a - b chia hết cho 13 => 6a - b = 13.k

+) Chứng minh a + 2b chia hết cho 13

Ta có: 2(8a + 3b) - 3(a + 2b) = 16a + 6b - 3a - 6b = 13a

Vì 8a + 3b chia hết cho 13 nên 2(8a + 3b) chia hết cho 13; 13a luôn chia hết cho 13

=> 3(a + 2b) chia hết cho 13 => a + 2b chia hết cho 13 => a + 2b = 12.q

Vậy (6a - b)(a+ 2b) = 13.k. 13.q = 169.k.q =>  (6a - b)(a+ 2b) chia hết cho 169

Bình luận (0)
LA
Xem chi tiết
NC
11 tháng 7 2019 lúc 10:01

Bạn tham khảo link này nhé!

Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
HM
Xem chi tiết
CM
Xem chi tiết
NT
Xem chi tiết
PT
10 tháng 2 2016 lúc 0:25

Ta có : 4(a+2b) - (4a+3b) = 4a + 8b - 4a - 3b = (4a - 4a) + (8a - 3b) = 0+ 5b = 5b

           3(a+2b) - (3a+b) = 3a + 6b - 3a - b = (3a - 3a) + (6b - b) = 0 + 5b = 5b

a+2b chia hết cho 5 nên 4(a+2b) và 3(a+2b) cũng chia hết cho 5 mà 5b chia hết cho 5 nên 4a+3b và 3a+b đều chia hết cho 5.

Bình luận (0)
HH
Xem chi tiết
ND
12 tháng 12 2016 lúc 18:02

\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7 

=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.

Bình luận (1)
TT
Xem chi tiết
AH
6 tháng 1 2024 lúc 23:31

Lời giải:

Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.

Vì $b=at-3< a$

$\Rightarrow a(t-1)< 3$

$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$

Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$

$\Rightarrow t=1$. Khi đó: $b+3=a$

$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$

$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$

Nếu $b=1$ thì $a=4$ (tm)

Nếu $b=2$ thì $a=5$ (tm)

Nếu $b=3$ thì $a=6$ (tm)

Nếu $b=6$ thì $a=9$ (tm)

TH2: $a(t-1)=1\Rightarrow a=t-1=1$

$\Rightarrow a=1; t=2$.

$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)

TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$

$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)

Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$

Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.

Bình luận (0)
NT
Xem chi tiết
NL
2 tháng 1 2024 lúc 11:13

- Nếu \(2a+3b⋮7\Rightarrow4\left(2a+3b\right)⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow8a+5b+7b⋮7\)

Mà \(7b⋮7\) với mọi  b nguyên \(\Rightarrow8a+5b⋮7\)

- Nếu \(8a+5b⋮7\), do \(7b⋮7\Rightarrow8a+5b+7b⋮7\Rightarrow8a+12b⋮7\)

\(\Rightarrow4\left(2a+3b\right)⋮7\)

Mà 4 và 7 nguyên tố cùng nhau \(\Rightarrow2a+3b⋮7\)

Bình luận (0)
NP
Xem chi tiết