Tính: 4/1.5+4/5.9+...+4/2001.2005
S=4/1.5+4/5.9+...+4/2001.2005
S=4/1.5+4/5.9+...+4/2001.2005
S =1/1 - 1/5 + 1/5 -1/9 + ...+ 1/2001 - 1/2005
S = 1/1 - 1/2005
S = 2014/2015
Tính nhanh
a) A=4/1.5+4/5.9+...+4/2001.2005
b) B=3/10.12+3/1214+...+3/998.1000
Ai lm đc nhớ nghi lời, giải đầy đủ~
Cảm ơn!!!
\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{2001\cdot2005}\)
\(A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(A=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
\(B=\dfrac{3}{10\cdot12}+\dfrac{3}{12\cdot14}+...+\dfrac{3}{998\cdot1000}\)
\(\dfrac{2}{3}B=\dfrac{2}{10\cdot12}+...+\dfrac{2}{998\cdot1000}\)
\(\dfrac{2}{3}B=\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-...+\dfrac{1}{998}-\dfrac{1}{1000}\)
\(\dfrac{2}{3}B=\dfrac{1}{10}-\dfrac{1}{1000}=\dfrac{99}{1000}\)
\(B=\dfrac{99}{1000}:\dfrac{2}{3}=\dfrac{297}{2000}\)
\(A=\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(\Rightarrow A=4\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{2001.2005}\right)\)
\(\Rightarrow A=4.\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2005}\)
\(\Rightarrow A=\dfrac{2004}{2005}\)
\(B=\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{998.1000}\)
\(\Rightarrow B=3\left(\dfrac{1}{10.12}+\dfrac{1}{12.14}+...+\dfrac{1}{998.1000}\right)\)
\(\Rightarrow B=3.\dfrac{1}{2}\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{12}+...+\dfrac{1}{998}-\dfrac{1}{1000}\right)\)
\(\Rightarrow B=\dfrac{3}{2}\left(\dfrac{1}{10}-\dfrac{1}{1000}\right)\)
\(\Rightarrow B=\dfrac{3}{2}.\dfrac{99}{1000}\)
\(\Rightarrow B=\dfrac{297}{2000}\)
Giúp mình với mình đag cần bây giờ
Tính tổng: S=\(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{2001.2005}\)
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
\(\dfrac{4}{1.4}+\dfrac{4}{5.9}+....+\dfrac{4}{2001.2005}\)
$\dfrac{4}{1.4}+\dfrac{5.9}+....+\dfrac{4}{2001.2005}$
$=1+\dfrac15-\dfrac19+....+\dfrac{1}{2001}-\dfrac{1}{2005}$
$=1-\dfrac{1}{2005}=\dfrac{2004}{2005}$
\(\dfrac{4}{1.4}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{2005}\)
\(=1+\dfrac{401}{2005}-\dfrac{1}{2005}\)
\(=1+\dfrac{400}{2005}=1+\dfrac{80}{401}=\dfrac{481}{401}\)
Giải:
\(\dfrac{4}{1.4}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{2005}\)
\(=1+\dfrac{80}{401}\)
\(=\dfrac{481}{401}\)
A=2/1.4+2/4.7+2/7.10+...2/100.103
B=1/1.5+1/5.9+...1/2001.2005
giai nhanh nha
B=\(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{2001.2005}\)
=\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-...+\frac{1}{2001}-\frac{1}{2005}\)
=\(\frac{1}{1}-\frac{1}{2005}\)
=\(\frac{2004}{2005}\)
Tính tổng M=-4/1.5-4/5.9-4/9.13-…-4/(n+4.)n
Tính tổng M=-4/1.5-4/5.9-4/9.13-…-4/(n+4.)n
Có dạng tổng quát như thế này nhé:
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)
Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
Đáp án là: \(\frac{1}{n+4}-1\)
Tính tổng:
M= -4/1.5 - 4/5.9 - 4/9.13 - ... - 4/(n+4).n