Những câu hỏi liên quan
NA
Xem chi tiết
NM
14 tháng 11 2021 lúc 15:06

Đặt \(\left\{{}\begin{matrix}n+1=a^2\\n+6=b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=a^2-1\\n=b^2-6\end{matrix}\right.\Rightarrow a^2-1=b^2-6\)

\(\Rightarrow a^2-b^2=-6+1=-5\\ \Rightarrow\left(a-b\right)\left(a+b\right)=-5\cdot1=-1\cdot5\)

Vì \(n+1< n+6\Rightarrow a< b\Rightarrow a-b< a+b\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-b=-1\\a+b=5\end{matrix}\right.\\\left\{{}\begin{matrix}a-b=-5\\a+b=1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\end{matrix}\right.\Rightarrow n=3\)

 

Bình luận (1)
TH
Xem chi tiết
VV
Xem chi tiết
DT
Xem chi tiết
AH
25 tháng 2 2023 lúc 23:35

Lời giải:

Đặt $n+1995=a^2, n+2014=b^2$ với $a,b\in\mathbb{N}$

Khi đó:

$(n+2014)-(n+1995)=b^2-a^2$

$\Leftrightarrow 19=b^2-a^2=(b-a)(b+a)$

Vì $b,a$ là 2 số tự nhiên nên $b+a> b-a$. Vì $b+a>0, (b+a)(b-a)=19>0$ nên $b-a>0$

Suy ra $b+a=19; b-a=1$

$\Rightarrow b=10$

$\Rightarrow n+2014=b^2=10^2=100\Rightarrow n=-1914$

Bình luận (0)
NT
Xem chi tiết
DA
30 tháng 5 2017 lúc 10:47

N = 5 nhé bạn

Bình luận (0)
HT
30 tháng 5 2017 lúc 10:55

vì n+4 và n+11 đều là số chính phương nên có hệ

\(\hept{\begin{cases}n+4=a^2\\n+11=b^2\end{cases}}\)trừ phương trình ta có :\(b^2-a^2=7\Leftrightarrow\left(b-a\right)\left(b+a\right)=7\) do đó b-a và b+a là ước của 7 nên

\(\hept{\begin{cases}a+b=7\\b-a=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=4\end{cases}\Leftrightarrow}\hept{\begin{cases}n+4=9\\n+11=16\end{cases}\Leftrightarrow}n=5}\)
Bình luận (0)
NA
30 tháng 5 2017 lúc 11:18

n+4 và n+11 là các số chính phương

=> \(n+4=a^2\) ; \(n+11=b^2\)(*)

Do \(n+11>n+4\)=> \(b^2>a^2\)( a và b là số tự nhiên )

Có \(b^2-a^2=\left(n+11\right)-\left(n+4\right)\)

=>\(\left(b+a\right)\left(b-a\right)=n+11-n-4\)

=> \(\left(b+a\right)\left(b-a\right)=7\)

Ta có ước tự nhiên của 7 là các số: 1;7 (7 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:

\(\left(b+a\right)=7;\left(b-a\right)=1\)

Cộng hai về b+a và b-a ta được:

\(\left(b+a\right)+\left(b-a\right)=7+1\)

=> \(b+a+b-a=8\)

=>\(2b=8\)

=>\(b=4\)

Thay b=4 vào (*) ta được :

\(n+11=b^2\)=> \(n+11=4^2=16\)=> \(n=16-11=5\)

Vậy n=5 thì n+4 và n+11 là các số chính phương.

Bình luận (0)
VM
Xem chi tiết
N1
Xem chi tiết
YS
29 tháng 10 2018 lúc 19:14

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
ND
10 tháng 11 2016 lúc 20:47

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
Bình luận (0)
TA
9 tháng 3 2017 lúc 20:50

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1

Bình luận (0)