Cho A= 3/6.8 + 3/8.10 + 3/10.12 +........
Tìm số hạng thứ 30 của dãy số và tính tổng 30 số hạng đó.
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp.
2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó.
3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng.
4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. 55= 1+2+3+...+9+10
2. 1,2,3,...30,31
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp. 2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó. 3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng. 4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
Cho dãy số: 2;6;12;20;30;...
a) Viết tiếp 3 số sau của dãy sau số 30
B) Tìm số hạng thứ 30 của dãy
C) Tính tổng của 30 số hạng đầu tiên của dãy
Xin mn trình bày lô rích giùm em với ạ
a) ta lấy 6 - 2 = 4
12-6= 6
20-12=8
30-20=10
nhìn các số trên ta có thể thấy các số cộng với 2,,6,12,20,30,... đều là số chẵn là 2,4,6,8,0. nhưng lần này bạn sẽ thắc mắc vì sao lại bắt đầu cộng từ 4 mà không phải vì 2 là vì :
ta đã thấy số 2 đứng đầu là sỗ chẵn rồi nên sẽ cộng từ 4
vậy dãy số mà tôi đưa ra là :
2,6,12,20,30,32,36 , 42.
"còn những câu khac tôi không hiểu . xin lỗi vì không thể trả lời hết ".
* Cho dãy số: 2;6;12;20;30;...
a) Viết tiếp 3 số sau số 30.
b) Tìm số hạng thứ 30 của dãy.
c) Tính tổng của 30 số hạng đầu tiên của dãy
Xin mn trình bày cách giải lô rích giùm mk vs ạ ! Thanhk you very much!
a) 3 số hạng tiếp theo là: 42;56;72.
b) Ta có: 2=1 x 2
6=2 x 3
12=3 x 4
20=4 x 5
30= 5 x 6
Quy luật của dãy số: mỗi số hạng bằng số thứ tự của nó nhân với số liền sau .
Vậy số hạng thứ 30 của dãy là:
30 x 31=930
Đáp số: a) 42;56;72
b) 930.
cảm ơn bạn nha vậy câu b làm ntn vậy
1. cho dãy so 3,8,13,23,... tìm số hạng thứ 30 của dãy số trên.
2. cho dãy số 1,4,9,16,...
a) tìm số hạng tổng quát của dãy
b) số 625 lá số hạng thứ bao nhiêu
c)số hạng thứ 100 là số nào
3. cho dãy số 1,2,3,4,...,195
a)tính số chữ số trong dãy
b) chữ số thứ 195 là chữ số nào
1. Dãy số 3, 8, 13, 23,... có dạng số hạng thứ n là: a_n = 5n - 2.
Vậy số hạng thứ 30 của dãy số trên là: a_30 = 5 x 30 - 2 = 148. 2.
a) Dãy số 1, 4, 9, 16,... có dạng số hạng tổng quát là: a_n = n ^ 2.
b) Để tìm số hạng thứ n, ta giải phương trình n ^ 2 = 625, ta được n = 25.
c) Số hạng thứ 100 là: a_100 = 100^2 = 10000.
3. a) Dãy số 1, 2, 3, 4,... đến 195 có 195 số.
b) Chữ số cuối cùng của dãy số trên là 5.
cho dãy số 12,13,14,15,16,...,80
a)dãy trên có bao nhiêu số hạng
b)Tính tổng các số hạng của dãy
c)tìm số hạng thứ 30 của dãy
a) 69 số hạng
b) 3174
Code : Breacker
Cho dãy số: 100 ; 97 ; 94 ; ...có bao nhiêu số hạng, biết rằng số hạng cuối cùng của dãy số đó là số nhỏ nhất có 1 chữ số khác 1 và chia cho 3 dư 1 ? Tìm số hạng thứ 25 và 30 của dãy số.
Cho dãy số cách đều gồm 9 số hạng, có số hạng thứ năm là19 và số hạng thứ chín là 35. Hãy viết đủ các số hạng?
Bài 2: Cho dãy số tự nhiên gồm 10 số hạng có tổng bằng 3400, biết. rằng mỗi số sau hơn số trước 10 đơn vị. Tìm số hạng đầu tiên và số hạng cuối cùng.
Bài 3: Cho dãy số tự nhiên gồm 11 số hạngcos tổng bằng 176, biết rằng hiệu của số cuối và số đầu là 30. Hãy viết dãy số đó.
Nhanh mình tick cho!!!!!!!!!!
blah blah blah...
blah blah blah ...
blah blah blah ...
ko can k dau!
Bài 2:
Gọi số hạng đầu là X, số hạng cuối là Y, số lượng số hạng là Z, tổng là A và khoảng cách là B. Áp dụng 2 công thức dưới đây, bạn sẽ giải được dạng bài toán này:
1. Tính tổng: A = (X + Y) x Z : 2 (1)
2. Tính số lượng số hạng: Z = (Y - X) : B (2)
Điền dữ liệu đầu bài vào (1) và (2) ta có:
3400 = (X + Y) x 10 : 2 ==> X + Y = 680 (1)
10 = (Y - X) : 10 +1 ==> Y - X = 90 (2)
Từ (1) và (2) suy ra: X + Y + Y - X = 680 + 90 ==> Y = 385, X = 295.
Tiếp bài 2 (cách khác): Tôi thấy công thức mới này do tôi nghiên cứu lập ra sẽ tính nhanh hơn nhiều.
- Số hạng đầu tiên = (A : 5 - B x 9) : 2
- Số hạng cuối cùng = (A : 5 + B x 9) : 2
với A là tổng số hạng, B là khoảng cách giữa các số hạng, 9 là đơn vị khoảng cách giữa số hạng đầu tiên và số hạng cuối cùng (10 - 1 = 9 đơn vị), 5 là số cặp 2 số hạng đầu cuối có tổng bằng nhau (10 số hạng).
Áp dụng công thức trên suy ra:
- Số hạng đầu tiên = (3400 : 5 - 10 x 9) : 2 = 295.
- Số hạng cuối cùng = (3400 : 5 + 10 x 9) : 2 = 385.
Bài 5. Cho dãy số 1; 3; 9; 27
a. Viết tiếp vào dãy 3 số hạng.
b. Biết dãy trên có 20 số hạng. Tìm số hạng thứ 20 của dãy.
c. Tính tổng tất cả các số hạng của dãy đó.
a) 1;3;9;27;81;243;729
b) Số hạng thứ 20 của dãy là: \(3^{19}\)