cho đẳng thức x.(x+1).(x+2).(x+3).....(x+2017)=2017 .chứng tỏ x<1/2016!
GIÚP MÌNH VỚI CÁC BẠN
Cho biết: x(x+1)(x+2)(x+3)....(x+2017)=2017. Tìm x (x>0)chứng tỏ rằng x> \(\frac{1}{2016!}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
a) Cho x,y thỏa mãn đẳng thức \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\).Tính x+y
b) Cho x,y thỏa mãn đẳng thức\(\left(\sqrt{x^2+2017}-x\right)\left(\sqrt{y^2+2017}-y\right)=2017\).Tính x+y
Cho x + y = 2 chứng tỏ x^2017 + y^2017 <= x^2018 + y^2018
1.Cho đa thức f(x)=ax2 + bx + c với a, b, c là các hệ số nguyên. Chứng minh: f(x) + f(-x) ⋮ 2 với mọi số nguyên x .
2.Cho đa thức P(x)=ax+b (a, b ∈ Z;a ≠0). Chứng minh rằng:/P(2018) - P(1)/ ≥ 2017
3.Cho đa thức f(x) =2x2 + 3x +1.Chứng tỏ f(2n) - f(n) ⋮ 3.
4.Cho đa thức f(x) = 5x+1. Với 2 số a và b (a<b).
5.Cho đa thức f(x) = ax + b với a≠0, a ϵ Z. Chứng tỏ rằng /f (2017) - f(1)/ ≥ 2016.
giúp mình với!!!
Cho biết x = 1 +2 +2*2
+2*3
+... + 2*2016
+2*2017
; y = 2*2018
Chứng tỏ x, y là hai số tự nhiên liên tiếpCho biết x = 1 +2 +2*2
+2*3
+... + 2*2016
+2*2017
; y = 2*2018
Cho x(x+14)(x+2)(x+3)(...)(x+2017)=2017(với x>0). Chứng minh rằng x<\(\frac{1}{2017!}\)
Cho hai đa thức với hệ số nguyên f1(x), f2(x) thỏa mãn f(x)= f1(x3) + x.f2(x3) chia hết cho x2+x+1. Chứng minh rằng ƯCLN(f1(2017),f2(2017)) lớn hơn hoặc bằng 2016
1 Chứng tỏ 10^2016 chia hết cho 9
2 Tìm giá trị nhỏ nhất của biểu thức
A=|x-2016|+|x-2017| với x thuộc z
1 Chứng tỏ 10^2016 chia hết cho 9
2 Tìm giá trị nhỏ nhất của biểu thức
A=|x-2016|+|x-2017| với x thuộc z
1) đề sai
2) \(A=\left|x-2016\right|+\left|x-2017\right|=\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2016+2017-x\right|=1\)
Dấu "=" xảy ra khi: \(2016\le x\le2017\)