Những câu hỏi liên quan
TD
Xem chi tiết
NA
27 tháng 2 2021 lúc 13:50

Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
27 tháng 1 2022 lúc 20:53

Bình luận (0)
 Khách vãng lai đã xóa
DT
30 tháng 1 2022 lúc 14:26

loading...

 

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
LM
Xem chi tiết
TD
27 tháng 1 2016 lúc 12:12

BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.

Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)

Như vậy m là số lẻ, đặt \(m=2n+1\)

Ta có:

\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8

\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1

Vậy ta có điều phải chứng minh.

Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.

Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)

a,c lẻ \(\Rightarrow\) \(ac\) lẻ

Đặt \(ac=2l-1\left(l\in Z\right)\)

Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.

\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ

Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

b,a\(\in Z\)\(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.

Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.

  

  


ơng   là phươngax2+bx+c=0

 

 

 

Bình luận (1)
NM
27 tháng 1 2016 lúc 12:55

Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )

Bình luận (0)
HH
23 tháng 2 2018 lúc 19:42

ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1

Bình luận (0)
OO
Xem chi tiết
HN
6 tháng 7 2018 lúc 15:18

làm đi

Bình luận (0)
VD
27 tháng 3 2020 lúc 9:29

tôi cũng là roronoa zoro đây

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
AN
31 tháng 5 2017 lúc 9:47

Theo Vi et ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\)

Theo giả thuyết thì:

\(x_1^2+x_2^2=2x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\)

\(\Leftrightarrow\frac{b^2}{a^2}-\frac{4c}{a}=0\)

\(\Leftrightarrow b^2-4ac=0\)

Vậy ta có ĐPCM

Bình luận (0)
NN
Xem chi tiết
TL
19 tháng 3 2023 lúc 17:03

Thay `b=5a+2c` vào `ax^2+bx+c=0`:

`ax^2+(5a+2c)x+c=0`

`=>Delta=(5a+2c)^2-4ac`

`=25a^2+20ac+4c^2-4ac`

`=25a^2+16ac+4c^2`

`=9a^2+(16a^2+16ac+4c^2)`

`=9a^2+(4a+2c)^2>=0`

`=>` ĐPCM

Bình luận (0)
TD
Xem chi tiết
NT
8 tháng 4 2021 lúc 16:57

a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 1 ; 3 } 

b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)

Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)

TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)

Lấy phương trình (1) + (2) ta được : 

\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)

mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)

\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)

\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)

\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ 

Bình luận (0)
 Khách vãng lai đã xóa
NH
30 tháng 6 2021 lúc 21:32

x=1 và x=3

Bình luận (0)
 Khách vãng lai đã xóa
VL
16 tháng 10 2021 lúc 20:59

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
DA
Xem chi tiết