Cho n số thực \(x_1;x_2;x_3;...;x_n\left(n\ge3\right)\)
\(CMR:max\left\{x_1;x_2;x_3;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Giải hệ bất phương trình 9 ẩn số: \(\left\{\begin{matrix} x_1(x_2-x_3+x_4)<0(1)\\x_2(x_3-x_4+x_5)<0(2)\\.......................\\x_8(x_9-x_1+x_2)<0(8)\\x_9(x_1-x_2+x_3)<0(9) \end{matrix}\right.\)
1)Cho các số thực \(x_1,x_2,x_3\)và \(y_1,y_2,y_3\)thỏa mãn \(x_1\le x_2\le x_3,y_1\le y_2\le y_3\).Chứng minh rằng \(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)\le3\left(x_1y_1+x_2y_2+x_3y_3\right)\)
2)Với các số thực x,y,z tùy ý thỏa mãn \(1< x\le y\le z\).Chứng minh rằng:
\(\frac{x^{2017}+y^{2017}+z^{2017}}{x^{2018}+y^{2018}+z^{2018}}\le\frac{3}{x+y+z}\)
cho \(f\left(x\right)=ax^2+bx+c\) là đa thức bậc 2 với các hệ số b,c∈R giả sử phương trình \(f\left(f\left(x\right)\right)=0\)có bốn nghiệm thực (không cần phân biệt ) , được kí hiệu bởi \(x_1,x_2,x_3,x_4\)biết \(x_1+x_2=-1\)CMR \(c\le\frac{1}{4}\)
Cho 2 phương trình \(x^2+bx+c=0\left(1\right)\)và \(x^2-b^2x+bc=0\left(2\right)\)( trong đó x là ẩn số , b và c là các tham số ) . Biết pt ( 1 ) có 2 nghiệm \(x_1;x_2\), pt (2) có 2 nghiệm \(x_3;x_4\) thỏa :
\(x_3-x_1=x_4-x_2=1\)
cho \(f\left(x\right)=x^2+ax+c\)là đa thức bậc 2 với các hệ số \(b,c\in R\)giả sử phương trình \(f\left(f\left(x\right)\right)=0\)có bốn nghiệm thực (không cần phân biệt ) , được kí hiệu bởi \(x_1,x_2,x_3,x_4\)biết \(x_1+x_2=-1\)CMR : \(c\le\frac{1}{4}\)
Cho phương trình \(x^3-mx-2\left(m-4\right)=0\). Tìm m để phương trình có 3 nghiệm phân biệt \(x_1,x_2,x_3\)sao cho \(x_1^2+x_2^2+x_3^2+x_1x_2x_3=25\)
Cho PT \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)
Tìm $m$ để PT có 4 nghiệm phân biệt $x_1,x_2,x_3,x_4$ sao cho
\(\dfrac{x_1x_2x_3}{2x_4}+\dfrac{x_1x_2x_4}{2x_3}+\dfrac{x_1x_3x_4}{2x_2}+\dfrac{x_2x_3x_4}{2x_1}=2017\)
Cho phương trình \(x^2-2\left|x\right|+1-4a^2=0\)(x là ẩn số)
Giải phương trình với a=1
Tìm a để phương trình có 4 nghiệm \(x_1,x_2,x_3,x_4\)Khi đó tồn tại hay không giá trị lớn nhất của:S=\(x_1^2+x_2^2+x_3^2+x_4^2\)