Tính tổng:
2/1×3+2/3×5+2/5×7+...+2/99×101
Tính tổng
A, 2/1*3+2/3*5+2/5*7+...+2/99.101
B,5/1*3+5/3*5+5/5*7*...+5/99*101
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
\(B=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(B=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
\(B=\frac{5}{2}.\frac{100}{101}\)
\(B=\frac{250}{101}\)
Tính tổng
H=1^2+3^2+5^2+7^2+......+99^2+101^2
\(H=1^2+3^2+5^2+....+101^2\)
\(H=1^2+2^2+3^3+...+101^2+102^2-\left(2^2+4^4+....+102^2\right)\)
\(H=1+2\left(1+1\right)+3\left(2+1\right)+...+102\left(101+1\right)-2^2\left(1^2+2^2+...+51^2\right)\)
\(H=1+1.2+2+2.3+3+....+101.102+102-2^2\left(1+2\left(1+1\right)+...+51\left(50+1\right)\right)\)
\(H=\left(\left(1+2+...+102\right)+\left(1.2+2.3+...+101.102\right)\right)-2^2\left(1+1.2+2+...+50.51+51\right)\)
Chắc cậu đã biết cách nhân ở bễ 1+2+3+...+102 và cách 1.2+2.3+....+101.102 rồi nhỉ ???? Dạng nhân 3 mỗi vế rồi loại dần ý.
\(H=\left(5253+353702\right)-2^2\left(\left(1+2+...+51\right)+\left(1.2+2.3+...+50.51\right)\right)\)
\(H=358955-4\left(1326+44200\right)=358955-182104=176851\)
Sai thì thôi ha .... nhưng cách đúng rồi đó .... chỉ sợ sai số thôi
Tính tổng
2/1*3+2/3*5+2/5*7+....+2/99*101
Ai trả lời tôi tick cả
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{99}-\frac{2}{101}\)
\(=2-\frac{2}{101}=\frac{200}{101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Tính tổng
1-2+3-4+5-6+7-8+....+99-100-101
Chúng ta nhóm [1-2]+[3-4]+...=-1+-1+-1=....tu tuc la hanh phuc
1-2+3-4+5-6+7-8+...+99-100-101
=(1-2)+(3-4)+(5-6)+(7-8)+...(99-100)-101
=(-1)+(-1)+(-1)+(-1)+...+(-1)-101
=(-1).50-101
=(-50)-101
=-151
Tính tổng:
2/1×3 + 2/3×5 + 2/5×7 +... +2/99×101
LƯU Ý: "/"là phần
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(=2.\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=1\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{99x101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
2/1×3+2/3×5+.......+2/99×101
5/1×3+5/3×5+5/5×7+.......+5/99×101
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)
\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)
\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)
....
\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)
=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)
=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)
=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)
=\(\frac{5}{2}\cdot\frac{100}{101}\)
\(=\frac{250}{101}\)
= 3 - 1 / 1 x 3 + 5 - 3 / 3 x 5 + ... + 101 - 99 / 99 x 101
= 1 - 1 / 3 + 1 / 3 - 1 / 5 + 1 / 5 - ... - 1 / 99 + 1 / 99 - 1 / 101
gạch gạch gạch gạch ... gạch gạch
= 1 - 1 / 101
= 100 / 101
Tính B=1*3+5*7+9*11+...+97*101
C=1*3*5-3*5*7+5*7*9-....-97*99*101
D=1*99+3*97+5*95+...+49*51
E=1*3^3+3*5^3+5*7^3+...+49*51^3
F=1*99^2+2*98^2+3*97^2+...+49*51^2
cái này bạn mở sách bồi dưỡng toán ra trang gần cuối là thấy ngay ấy mà
tính tổng
1+2+3+...+100
1+3+5+...+99+101
1+4+7+...+97+100
1 + 4 + 7 + 97 + 100
Số số hạng:
( 100 - 1 ) : 3 + 1 = 34
Tổng trên có:
( 100 + 1 ) x 34 : 2 = 1717
Đáp số: 1717.
Tương tự.
1 + 2 + 3 + ... + 100
Ta có : 1 + 2 + 3 + ... + 100 ( có 100 số hạng )
= (100 + 1) x 100 : 2 = 5050
1 + 3 + 5 + ... + 99 + 101 ( có 51 số hạng )
= (101 + 1) x 51 : 2 = 2601
1 + 4 + 7 + .. + 97 + 100 ( có 34 số hạng )
= (100 + 1) x 34 : 2 = 1717
tổng của các số trên là:
( 100 + 1 ) x 34 : 2 = 1717
Đáp số : 1717
dựa vào bài này mà làm
tính các tổng sau
1) A = 1+7+7^2+7^3+....+7^2007
2) B= 1+4 +4^2+4^3+....+4^100
3) C= 1+3^2 +3^4 +3^6+3^8+....+3^100
4) D= 7+7^3 + 7^5+7^7+7^9+....+7^99
5)E= 2+2^3+2^5+2^7+2^9+....+2^2009
6) B = 1+2^2+2^4+2^6+2^8+....+2^200
7) C= 5+5^3+5^5+5^9+....+5^101
8) D = 13+13^3+13^5+...+13^99
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
4b=4+4^2+4^3+...+4^101
4b-b=(4+4^2+...+4^101)-(1+4+4^2+...+4^100)
3b=4^101-1
b=(4^101-1):3