Cho:A=1/31+1/32+1/33+..............+1/60
Chứng minh rằngA>7/12
A=1/31+1/32+1/33+...+1/60. chứng minh A>7/12
A = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) < 1/4 ; (1/51 + 1/52+...+1/59+1/60) < 1/5
Mà A = (1/3 + 1/4 + 1/5) = 47/60 > 7/12
Vậy A >7/12
cho A= 1/31+1/32+1/33+.....+1/60
chứng minh rằng A> 7/12
A = 1/31 + 1/32 + 1/33 + ... + 1/60
=> A = (1/31 + 1/32 + ... + 1/45) + (1/46 + 1/47 + ... 1/60) > (1/45) x 15 + (1/60) x 15
=> A > 1/3 + 1/4 = 7/12
Vậy A > 7/12 (đpcm)
chưgs minh rằng :
1/31+1/32+1/33+.....+1/60>7/12
https://olm.vn/hoi-dap/question/144852.html
vào đây xem lời giải nó ( cách giải giống cô mik)
Ta có : \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)
Số lượng số dãy số ban đầu là :
( 60 - 31 ) : 1 + 1 = 30 ( số )
Chia làm 2 nhóm , mỗi nhóm có :
30 : 2 = 15 ( số )
Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{3}\left(1\right)\)
Ta có : \(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{4}\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\left(Đpcm\right)\)
Chúc bạn học tốt nha !!!
cho A = 1/31 + 1/32 + 1/33 + ... + 1/60 CMR : A > 7/12
tích mình đi
ai tích mình
mình tích lại
thanks
Số lượng số dãy số trên là :
\(\left(60-31\right):1+1=30\) ( số )
Do \(30⋮2\)nên ta nhóm A thành 2 nhóm như sau :
\(A=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}\right)\)
Ta có : \(\frac{1}{31}>\frac{1}{45};\frac{1}{32}>\frac{1}{45};...;\frac{1}{44}>\frac{1}{45}\)
\(\Rightarrow\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}>\frac{1}{45}.15=\frac{1}{3}\left(1\right)\)
\(\frac{1}{46}>\frac{1}{60};\frac{1}{47}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{46}+\frac{1}{47}+...+\frac{1}{60}>\frac{1}{60}.15=\frac{1}{4}\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)
CMR:
1/31+1/32+1/33+...+1/60 > 7/12
Chứng minh rằng
a) G=88 + 220 chia hết cho 17
b) H=2+2+22+23+...+260 chia hết cho 3; 7; 15
c) I=E=1+3+32+33+...+31991 chia hết cho 13; 14
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
cho \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
chứng minh rằng \(A>\frac{7}{12}\)
A: có 30 số hạng không đủ
phải chia nhỏ ra
\(A=\left(\frac{1}{31}+...+\frac{1}{36}\right)+\left(\frac{1}{37}+..+\frac{1}{48}\right)+\left(\frac{1}{49}+..+\frac{1}{60}\right)\)
\(A>\left(\frac{6}{36}\right)+\left(\frac{12}{48}\right)+\left(\frac{12}{60}\right)=\frac{3}{12}+\frac{3}{12}+\frac{1}{12}=\frac{7}{12}\)
Cho S= 1/31+1/32+1/33+......................+1/100 .Chứng minh S<7/3
Cho \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
Chứng minh rằng A > \(\frac{7}{12}\)
Ta có : \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\frac{1}{33}>\frac{1}{40};...;\frac{1}{38}>\frac{1}{40};\frac{1}{39}>\frac{1}{40}\)
=> \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\) (1)
\(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\frac{1}{43}>\frac{1}{50};...;\frac{1}{48}>\frac{1}{50};\frac{1}{49}>\frac{1}{50}\)
=> \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{10}{50}=\frac{1}{5}\) (2)
\(\frac{1}{51}>\frac{1}{60};\frac{1}{52}>\frac{1}{60};\frac{1}{53}>\frac{1}{60};...;\frac{1}{58}>\frac{1}{60};\frac{1}{59}>\frac{1}{60}\)
=> \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{59}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{10}{60}=\frac{1}{6}\)(3)
Từ (1) , (2) và (3) => \(\frac{1}{31}+...+\frac{1}{39}+\frac{1}{40}+\frac{1}{41}+...+\frac{1}{49}+\frac{1}{50}+\frac{1}{51}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\)
=> \(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{7}{12}\)
=> \(A>\frac{7}{12}\)
Hài lòng chưa má? -_-
tôi rất dốt toán CMR chắc chỉ còn cách tính A thôi
ns đến bài Tết thì hình như tôi cũng có 50 bài toán -_-"