cho x,y.z là ba số # +- 1 sao cho xy +yz +xz =1 . CMR : x/1-x^2 + y/1-y^2 + z/1-z^2 = 4xyz / (1 -x^2 ) . (1- y^2) . ( 1- z^2)
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
Gấp ạ
CHO các số x=bc + a;y=ab + c;z=ca + b là các số nguyên tố [a,b,c>0] .Chứng minh rằng ba số x,y.z ít nhất có hai số bằng nhau
Cho các đơn thức: -1/2019 x^4.y.z^3; 108.x^3.y^2.z; 304.x^5.y.z^4. Chứng minh rằng: trong ba đơn thức đó có ít nhất một đơn thức có giá trị dương
đây
suốt ngày hỏi
Đặt ba đơn thức lần lượt là a,b,c
ta có:a*b*c= (-1/2019.x^4.y.z^3).(108.x^3.y^2.z).(x^5.y.z^4)
d=(-1/2019.108.304).(x^4.x^3.x^5.y.y^2.y.z^3.z.z^4)
d=-32832.x^12.y^4.z^8
=> d<0 với mọi x,y,z do x^12.y^4.z^8 luôn dương
=> đpcm
TÌM BA SỐ NGUYÊN TỐ BIẾT x,y.z BIẾT \
(x,y,z) . 5 = xyz
Cho ba số x, y, z đôi một nguyên tố cùng nhau
CMR : hai số (x.y.z) và (x.y + x.z + y.z ) nguyên tố cùng nhau
1. Cho tỉ lệ thức x/3 = y/4 và x.y = 12. Tìm x, y
2. Cho ba số x, y, z thỏa mãn x.y = -30; y.z = 42 và z-x = -12. Tính x, y, z
3.Tìm hai số x và y, biết: x/3 = y/-5 và x-y = 16
Cảm ơn các bạn
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Cho ba số x, y, z thỏa mãn y khác z và x+y khac z và z^2=2(x.z+y.z-xy)
Chứng minh rằng x^2 +(x-z)^2/y^2+(y-z)^2= x-z/y-z
Cho x,y.z là các số nguyên và x+y+z chia hết cho 6 CMR.(x+y)(y+z)(z+x)-2xyz chia hết cho 6
Tìm ba số x,y,z khác 0 biết: x^2.y.z=-4 ; x.y^2.z=2 ; x.y.z^2=-2
\(\left\{{}\begin{matrix}x,y,z\ne0\\x^2.y.z=-4\\xy^2z=2\\xyz^2=-2\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\\\left(4\right)\end{matrix}\)
(2).(3).(4) \(\left(x^2yz\right).\left(xy^2z\right)\left(xyz^2\right)=\left(x^{2+1+1}.y^{1+2+1}.z^{1+1+2}\right)=\left(xyz\right)^4=\left(-4\right).2.\left(-2\right)=8\)\(\Leftrightarrow\left[{}\begin{matrix}xyz=2\\xyz=-2\end{matrix}\right.\)\(\begin{matrix}\left(I\right)\\\left(II\right)\end{matrix}\)
TH(I)
(2) => x =-2 ;(3) => y =1;(4) => z =-1
TH(II)
(2) => x =2 ; (3) => y =-1; (4) => z =1
(x;y;z)=(-2;1;-1);(2;-1;1)