Cho x,y,z dương. Cmr 1/(x-y)^2 +1/(y-z)^2+1/(z-x)^2>=4/(xy+xz+yz)
cho x,y,z là sô dương x^2+y^2+z^2.CMR
1/1+xy + 1/1+yz + 1/1+xz >=3/2
XY+1/Y=YZ+1/Z=XZ+1/X
cmr x=y=z hoặc x^2+y^2+z^2=1
Cho x, y, z > 0 và x+ y+ z = 1`. CMR 1/( x2+ y2+ z2) + 1/ xy+ 1/yz+ 1/ xz> 30
1/ Cho \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}\), \(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}\) và \(x\ne1,x\ne-1\). Hãy tính z theo y
2/ Cho xy+yz+xz=1 và x,y,z khác 1,-1. Chứng minh rằng \(\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}=\frac{4xyz}{\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)}\)
Giải giúp mk mấy bài này nha:
1/x2y + xy2 + x2z + xz2 + y2z + yz2 + 3xyz
2/xy(x-y) - xz(x+z) - yz (2x-y+z)
3/x (y+z)2 + y(z-x)2 + z(x+y)2 - 4xyz
4/yz(y+z) - xz (z-x) - (x+y)
Cảm ơn nhiều lắm ạ
Cho x; y là các số không âm, z\(\le\) 0 thỏa mãn x^2 + y^2 + z^2 = 1
Chứng minh: \(\dfrac{x}{1-yz}+\dfrac{y}{1-xz}-\dfrac{z}{1+xy}\ge1\)
Cho x,y,z là độ dài 3 cạnh của tam giác. CMR
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{x+y+z}{2xyz}\)
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)