Những câu hỏi liên quan
NH
Xem chi tiết
KT
29 tháng 1 2018 lúc 20:19

       \(x^4+2015x^2+2014x+2015=0\)

\(\Leftrightarrow\)\(\left(x^4+x^2+1\right)+\left(2014x^2+2014x+2014\right)=0\)

\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2014\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+2015\right)=0\)

Ta có:   \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

           \(\left(x-\frac{1}{2}\right)^2+2014\frac{3}{4}>0\)

Vậy  pt  vô nghiệm

Bình luận (0)
NH
29 tháng 1 2018 lúc 20:00

ai làm hộ mk với 

tks nhiều

Bình luận (0)
TH
Xem chi tiết
NT
21 tháng 2 2021 lúc 14:24

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2014};-\dfrac{2}{2015};-\dfrac{3}{2016};-\dfrac{4}{2017}\right\}\)

Ta có: \(\dfrac{1}{2014x+1}-\dfrac{1}{2015x+2}=\dfrac{1}{2016x+3}-\dfrac{1}{2017x+4}\)

\(\Leftrightarrow\dfrac{2015x+2-2014x-1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{2017x+4-2016x-3}{\left(2016x+3\right)\left(2017x+4\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{x+1}{\left(2016x+3\right)\left(2017x+4\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}-\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2014x+1\right)\left(2015x+2\right)}=\dfrac{1}{\left(2016x+3\right)\left(2017x+4\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4058210x^2+6043x+2=4066272x^2+14115x+12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8072x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x^2+8062x+10x+10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8062x\left(x+1\right)+10\left(x+1\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(x+1\right)\left(8062x+10\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+1=0\\8062x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-1\\8062x=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\x=\dfrac{-5}{4031}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-5}{4031}\right\}\)

Bình luận (1)
NN
7 tháng 3 2021 lúc 9:40

câu này làm ntn :)

Bình luận (0)
 Khách vãng lai đã xóa
PM
Xem chi tiết
CP
Xem chi tiết
KT
Xem chi tiết
KT
29 tháng 7 2016 lúc 10:12

mk nhầm đề sửa lại là phân tích đa thức thành nhân tử

Bình luận (0)
HP
29 tháng 7 2016 lúc 20:19

x4+2014x2-2014x-x+2014

=x(x3-1)+2014(x2-x-1)

=x(x-1)(x2-x-1)+2014(x2-x-1)

=(x2-x-1)(x2-x+2014)

 

Bình luận (1)
HL
Xem chi tiết
MT
13 tháng 8 2015 lúc 8:36

 

 x4+2015x2+2014x+2015

=x4-x+2015x2+2015x+2015

=x.(x3-1)+2015.(x2+x+1)

=x.(x-1)(x2+x+1)+2015.(x2+x+1)

=(x2+x+1)(x2-x+2015)

Bình luận (0)
ML
13 tháng 8 2015 lúc 8:37

\(x^4+2015x^2+2014x+2015=\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(2015x^2+2015x+2015\right)\)

\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

Bình luận (0)
HC
Xem chi tiết
H24
23 tháng 8 2021 lúc 8:37

\(x^4+2015x^2+2014x+2015.\)

=\(\left(x^4-x\right)+2015x^2+2015x+2015\)

=\(x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)

=\(x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)

\(\left(x^2+x+1\right)\left(x^2-x-2015\right)\)

k cho mik

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết

trả lời

xx^4+2015x^2+2014x+2015=x^4+2015x^2+2015x-x+2015=x\left(x^3-1\right)+2015\left(X^2+x+1\right)=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+2015\right)xx

Bình luận (0)
ZZ
13 tháng 6 2019 lúc 15:18

\(x^4+2015x^2+2014x+2015\)

\(=\left(x^4-x\right)+2015x^2+2015x+2015\)

\(=x\left(x^3-1\right)+2015\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2015\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2015\right)\)

Bình luận (0)
DH
Xem chi tiết
TL
26 tháng 5 2015 lúc 16:54

Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1

=> vế trái có nhân tử (x - 1)

pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015)  = 0

<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0

<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0

<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0

<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0  

<=> x - 1 = 0 hoặc  x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015  = 0

+) x - 1 = 0 <=> x = 1

+) x + 1 = 0 <=> x = -1

+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0 

<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\)   - 2015 = 0

<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)

<=>  \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)

<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)

Vậy pt có 4 nghiệm...

Bình luận (0)
MT
26 tháng 5 2015 lúc 16:56

chính xác nè bạn nhớ sai ruj:

x4+2015x2+2014x+2015=0

<=>x4-x+2015x2+2015x+2015=0

<=>x(x3-1)+2015(x2+x+1)=0

<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0

<=>(x2+x+1)[x(x-1)-2015]=0

<=>(x2+x+1)(x2-x-2015)=0

<=>x2+x+1=0 hoặc x2-x-2015=0

*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0 

<=>(x+1/2)2+3/4=0(vô lí)

*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)

<=>(x-1/2)2-8061/4=0

<=>(x-1/2)2           =8061/4

<=>x-1/2              =\(\sqrt{\frac{8061}{4}}\)

<=>x                    =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)

Bình luận (0)