Tìm các số nguyên x,y sao cho \(\frac{x^2+1}{y^2}+4\) là một số chính phương
tìm x,y nguyên sao cho \(\frac{x^2+1}{y^2}+4\) là số chính phương
1. Tìm tất cả các số tự nhiên n sao cho: P = 1! + 2! + 3! + ... + n! là số chính phương
2. Chứng minh rằng với n là số nguyên dương bất kì thì:
\(A=1+\frac{1}{4}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1,65\)
3. Tìm tất cả các số tự nhiên không là tổng của 2 hợp số.
4. Tìm các số nguyên x,y thỏa mãn : \(\left(x+2003\right)\left(x+2005\right).4^y=3025\)
1 .cho a,b là 2 số nguyên dương sao cho\(A=\frac{a^2+b^2}{ab+1}\) là số nguyên , chứng minh A là số chính phương
2.giả sử x , y là các số nguyên dương sao cho\(B=\frac{x^2+y^2+6}{xy}\) là một số nguyên . chứng minh B là số lập phương
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
thtfgfgfghggggggggggggggggggggg
Cho các số nguyên x, y, z sao cho \(\frac{x\left(x-y\right)+y\left(y-z\right)+z\left(z-x\right)}{2}\) là một số chính phương. Chứng minh x= y =z
1)Tìm x;y là số nguyên dương sao cho x2 +3y và y2 +3x đều là số chính phương
2) Tìm x; y là các số tự nhiên thỏa mãn: 0<x<9; 1<y<9 sao cho xxyy = x+1,x+1. y-1,y-1
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
Tìm (x,y) nguyên dương sao cho \(A=x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}\)là số chính phương
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)